
DESIGNING MIDDLEWARE TO FACILITATE ANALYSIS
OF DISPARATE ENVIRONMENTAL DATASETS

Wesley Leonard

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Department of Computer Science

Central Michigan University
Mount Pleasant, Michigan

October, 2008

Accepted by the Faculty of the College of Graduate Studies,

Central Michigan University, in partial fulfillment of

the requirements for the master’s degree

Thesis Committee:

Committee Chair

Faculty Member

Faculty Member

Date:

Dean
College of Graduate Studies

Date:

Committee:

Paul Albee, Ph.D., Chair

Michael Stinson, Ph.D.

Tracy Galarowicz, Ph.D.

ii

This is dedicated to my supportive
and patient wife, Cynthia Drake.

iii

ACKNOWLEDGMENTS

This thesis would not be possible without the support of the Computer Science De-

partment at Central Michigan University and the guidance of my committee: Dr. Paul

Albee, Dr. Michael Stinson, and Dr. Tracy Galarowicz. I would also like to thank Thomas

Rohrer, director of the Environmental Studies Program at CMU, and the Michigan De-

partment of Environmental Quality. Finally, I wish to acknowledge the support of Central

Michigan University in producing this work.

iv

ABSTRACT

DESIGNING MIDDLEWARE TO FACILITATE ANALYSIS
OF DISPARATE ENVIRONMENTAL DATASETS

by Wesley Leonard

A middleware system to facilitate the exploration, combination, organization, con-

version, and analysis of data sets was designed and built. The web-based system provides

management controls, supports most operating environments, supports many data sources,

provides incremental or full data extracts, provides transformation of source data, pro-

vides data cleansing, and supports custom SQL for browsing or exporting data. Methods

of caching data from remote sources and joining tables from different databases were de-

signed and evaluated. After processing, data from remote sources or local cache tables are

exported in XML format. The prototype system was built with Ruby on Rails. A database

of fish contaminant studies from the Michigan Department of Environmental Quality was

used extensively as a test dataset.

The algorithms presented in this thesis are used to create a computationally efficient

middleware system to support data analysis. The data caching technique developed in this

thesis supports joins across heterogeneous database platforms, and is shown to improve

data retrieval and transformation performance.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF LISTINGS . x

CHAPTER

I. INTRODUCTION . 1
Background . 1

II. LITERATURE REVIEW . 6
Description of Selected Works . 6

Motivation and Similar Work 6
Data Mining and Analysis 7
Data Warehousing . 7
Middleware . 10
Web Services and XML . 11

Ruby on Rails . 12
Conclusions . 12

III. THESIS STATEMENT . 13
Description of System Components 13
Definition of Terms . 15

IV. DESCRIPTION OF ALGORITHMS . 17
Reading Data . 17
Data Caching . 18

Analysis of the DM Algorithm 23
Generating Queries . 25

V. IMPLEMENTATION DETAILS . 28
Management Interface . 28
Relational Database . 30
Middleware . 32

Metadata Discovery . 35

vi

Caching . 35
Web Service Interface . 35

VI. CONCLUSIONS . 42
Provide controls and management tools to access and view data 42
Support a wide variety of operating environments 42
Support a wide range of data sources 43
Support the propagation of both incremental changes and full extracts 43
Support source data transformations 44
Support data cleansing (removing inconsistent records from the data

set) . 44
Support documented SQL and other open interfaces for third-party

and user-defined code . 45
Data Caching . 45
Remote Joins . 45
Future Work . 46
Recommendations . 47

APPENDICES . 49

BIBLIOGRAPHY . 96

vii

LIST OF TABLES

TABLE PAGE

1. Sample results of execution time in seconds for various scenarios 24

2. Supported database engines in Ruby on Rails 52

3. Database engines under development . 52

viii

LIST OF FIGURES

FIGURE PAGE

1. Example of preliminary work - web front end for R 3

2. Plot of mercury concentration for all species 4

3. Structure of MI DEQ fish contaminant database 5

4. Dataset management interface . 29

5. Dataset exploration interface . 30

6. Export configuration interface . 36

7. Export field section interface . 37

8. Join configuration interface . 38

9. Transform configuration interface . 38

10. Transform test interface . 39

ix

LIST OF LISTINGS

LISTING PAGE

1. Sample of database schema defined in Ruby 32

2. Standard ActiveRecord method of reading and updating data 33

3. Manual database connection . 34

4. Database connection and metadata discovery 40

5. Example XML export . 41

6. Login Controller . 64

7. Manage Controller . 67

8. Webservice Controller . 75

x

CHAPTER I

INTRODUCTION

This thesis addresses the problem of storing and managing large sets of environ-

mental data from different sources. Specifically, fish contaminant data collected by the

Michigan Department of Environmental Quality needed to be stored, organized, and ac-

cessed by researchers and the public. Also, datasets from other organizations, in different

locations, or in different formats needed to be combined with the fish contaminant dataset

for analysis. Software tools needed to be created to facilitate the organization, combina-

tion, and export of these datasets for analysis. Furthermore, the data needed to be available

over the web via a simple interface for browsing and configuring datasets and through a

web service for export. Through the web service it should be possible to join tables from

different datasets, perform data transformations, and make the data readily accessible to

analysis software.

Background

Since 1980, the Michigan Department of Environmental Quality has been collecting

data on the concentration of certain contaminants (including mercury and PCBs) in fish

throughout the state of Michigan [4]. This dataset contains 29,033 samples from 28,586

different fish. Sixty-eight different species of fish are represented and three hundred twenty-

six different types of contaminants are measured. As an independent study project in 2006,

a system was developed to store this information in a PostgreSQL database and provide a

flexible web front-end to view and analyze the data. All software used to build this system

was open source and freely available.

This system utilizes the R Environment for data analysis. R is an integrated suite of

software facilities for data manipulation, calculation, and graphical display. R offers data

1

handling and storage, operators for calculations, a large collection of intermediate tools for

data analysis, graphical analysis tools, and a simple programming language [22]. For this

application, users may run pre-existing R programs or create custom R code to analyze the

available data. See Figures 1 and 2 for examples of this preliminary work with this data.

Figure 1 shows the web interface to the “fishR” application. The user is presented

with two predefined analyses:Average Mercury Concentration for all Species by Yearand

Average PCB Concentration for all Species by Year. Figure 2 shows the plot that results

from running the first analysis (mercury concentration). The user may alter the R code

presented in the text boxes to change which tables in the source database are read, which

fields are read, how data analyzed, and what information (including textual, numeric, or

graphical) is displayed.

Using this tool, a user would need to be familiar with R to explore and analyze

the dataset effectively. It was believed that a tool that could bring this and other datasets

into common, user-friendly analysis tools would allow researchers to take advantage of this

valuable dataset. This idea led to the work performed for this thesis.

2

Figure 1. Example of preliminary work - web front end for R

3

Figure 2. Plot of mercury concentration for all species

4

Figure 3. Structure of MI DEQ fish contaminant database

5

CHAPTER II

LITERATURE REVIEW

The vast and ever increasing amount of scientific and business data available has

made the use of computer-based data mining tools a necessity. As the use of modern data

collection tools (such as automated sensor networks) increases, so will the need for more

sophisticated and complex analysis tools [14]. This “data glut” has been growing since the

1990s, making traditional methods of data analysis infeasible [18].

Description of Selected Works

Motivation and Similar Work

An editorial published in “Issues in Science and Technology” by H. Spencer

Banzhaf describes how better data collection and analysis can help improve environmental

policy and enforcement. As an example of why resources should be put toward the analy-

sis of environmental and scientific data, the author describes how the analysis of historical

economic data has made it possible to set economic policies in a way that avoids negative

trends such as recession and inflation [3].

A system similar to the one proposed in this thesis was described in a paper titled

“Development of a Data Mining Application for Huge Scale Earth Environmental Data

Archives” by Ikoma et al. This system was designed to integrate and analyze 900 GB of

data from various sources. Some of the data sources included long-wave radiation read-

ing provided by the National Oceanic and Atmospheric Administration, wind speed data

from the National Center for Environmental Prediction/National Center for Atmospheric

Research, and seasonal cloud change data provided by the International Satellite Cloud

Climatology Project. The designers of this system sought to provide a more user-friendly

environment than existing analysis tools offered [10].

6

Data Mining and Analysis

Data mining is the process of sorting through large amounts of data and picking

out new, valuable, and nontrivial information. The two primary goals of data mining are

prediction (using variables within the dataset to predict unknown or future values of other

variables) and description (finding patterns within data that can be interpreted by humans)

[14].

While an understanding of data mining and analysis techniques is important, this

thesis focuses on the preliminary steps in data mining and data analysis. Selection, prepa-

ration, and preprocessing of raw datasets is a necessary step in the process of data mining.

Outlier detection is one common preprocessing task which reduces the amount of data

available for analysis by identifying and possibly removing unusual values that could re-

sult from measurement or recording errors and may drastically affect the analysis of the

data. Other common tasks include scaling, encoding, and selecting features (making sure

that data values with different ranges are appropriately weighted for analysis) [14, 15].

Often scientists wish to analyze data from different sources in order to cross-

validate their findings; however, scientific data often needs preprocessing to convert it from

its initial format into a format more accessible to analysis tools. Raw scientific data may

have missing values that need to be filtered out or extrapolated or high-dimensional data

that must be simplified for analysis. Scientific data frequently has both spatial and temporal

aspects (such as sensor data, which is collected in one location over a period of time). Also,

data that has been generated manually may be incomplete or labeled improperly [23].

Data Warehousing

A data warehouse can be thought of as a read-only database that creates a single

logical view of data and is accessed through a front-end tool or application [18]. The pri-

mary purpose of this database is analysis and it is kept separate from operational databases.

7

This separation is necessary because the performance of an operational database may suf-

fer if it were to share system resources with a data warehouse. Also, it is often impossible

to structure a database in such a way that it could perform adequately for both analytical

and operational purposes [13]. A traditional operational database is application-oriented,

usually not integrated with other databases, continuously updated, may contain only cur-

rent (not historical) data, and is accessed in a predictable manner. A data warehouse, in

contrast, is subject-oriented, may be made up of several integrated databases, nonvolatile,

contains stabilized data values, and is accessed in an ad hoc fashion [5].

The field of data warehousing is not mature, so there are many different methodolo-

gies being used. Some methodologies are linked to a particular vendor’s database system

(such as Oracle, IBM DB2, Sybase or Microsoft SQL Server), while others are based on a

particular infrastructure or information modeling tool (such as SAS, SAP, or PeopleSoft)

[17].

A two volume eBook titled “Encyclopedia of Data Warehousing and Mining” con-

tains several short articles on concepts including classification methods, data warehouse

back-end tools, and storage strategies in data warehousing. One article titled “A General

Model for Data Warehouses” proposes a model to define a well-formed data warehouse

structure. The method described by Michel Schneider describes how facts and dimensions

can be modeled in an acyclic graph structure (DWG). The DWG has several roots and dif-

ferent paths from the roots can always be divided into two sub-paths (one with only fact

nodes and another with only dimension nodes) [20, 21].

A data mart is similar to a data warehouse, but it contains a narrow scope of data

(a single subject, business function, or application). Data marts are often implemented on

second-tier servers, which draw data from a centralized warehouse and deliver the cleansed

data to clients [5]. Dimensional modeling is a typical data mart modeling technique. Using

this technique, facts (usually numerical) are stored in one or more tables and dimensions

8

(textual descriptions related to facts) are stored in one or more additional tables. The intent

is to represent information in a way that allows answers to be quickly retrieved from the

dataset [13]. For example, a facts table that has only numeric identifiers and contaminant

concentration values could be used to quickly retrieve the numeric identifiers that have

concentrations of a contaminant over a certain threshold. A dimension table could contain

information about the sample (based on the numeric identifier), such as the species of fish,

date it was analyzed, and location where the sample was taken.

Metadata is another important part of a data warehouse. Metadata is defined as data

about data or information required to make data useful. Traditional database design uses a

schema to describe the conceptual or logical data structure of entities in a database as well

as their relationships. The distinction between data and metadata is simply how the data

is used. Metadata makes it possible to understand what data is available, how to access it,

and how to interpret it. Metadata may contain the following information: [12, 18]

• A data dictionary (definitions of the databases being maintained and the relationships

between elements)

• Data flow (direction and frequency of data feed)

• Data transformation

• Version control

• Data usage statistics

• Column or attribute alias information

• Security

9

Middleware

The purpose of middleware is to establish a software layer that homogenizes an

infrastructure by means of a well-defined and structured programming model [11]. In a

data warehouse, the architectural objectives of middleware include support for:

• A wide range of data sources

• The propagation of both incremental changes and full extracts

• Source data transformations

• Data cleansing

• Documented SQL and other open interfaces for third-party and user-defined code

• Targets and sources with unpredictable connectivity [5]

Middleware provides general access to data and makes it possible for heterogeneous

databases to be connected together in a single view. Middleware technology designed to

enable the implementation of a data warehouse must do the following:

• Incorporate controls and management tools to manage an enterprise-wide view of

data

• Provide a single database, operating system, and network-independent interface to

the user and developer

• Provide an easy-to-use API (Application Programming Interface) which can be em-

bedded into applications

• Support a wide variety of data managers and operating environments

10

In a data warehouse, middleware’s key role is isolating applications from infras-

tructure. Physical databases are part of this infrastructure. With proper middleware, a data

warehouse acts as a single, consistent interface to the database infrastructure [18].

A paper by El Maghraoui et al. describes the Internet Operating System (IOS):

an agent-based middleware system for effectively utilizing internet-wide grid resources

[9]. This paper describes architectural features of middleware, programming models, and

application issues that are relevant to this thesis. The use of grid-based computing is an

emerging trend with the potential to change the way information is collected, shared, and

analyzed.

Web Services and XML

Web services refer to a set of technologies that enable networked and modular ap-

plications. Such technologies include Simple Object Access Protocol (SOAP), Web Ser-

vices Definition Language (WSDL), and Universal Description, Discover, and Integration

(UDDI) protocol [24, 8]. The web services framework has been developed to offer ap-

plications as services both within an organization and externally. This service-oriented

computing paradigm is built upon open XML-based standards [7].

XML is a self-describing semistructured data format. XML documents used for

data exchange can be sent as static documents or generated dynamically by computer pro-

grams. Milo et al. refer to XML documents where parts of the data are generated by

computer programs as “intensional documents”. The term “materialization” refers to the

process of evaluating a program in an intensional XML document and replacing it with

the result of the program. This process is similar to the way in which Ruby, PHP, or other

scripting languages can be embedded in HTML and evaluated by a web server when the

document is requested [16].

11

Use of XML and web services provide a framework for interoperability between

solutions. Web services help achieve flexible, secure, and coordinated resource sharing

among systems. This makes it possible to take advantage of distributed data collection,

data analysis, and other emerging “grid computing” technologies. This new paradigm is

referred to as the “semantic web” [8].

Ruby on Rails

Ruby on Rails was introduced in 2004 and has gained a reputation for being a quick

framework for developing web applications [19]. Rails applications use the Model-View-

Controller (MVC) architecture, in which the application’s data, business logic, and user

interface are isolated from each other. Rails comes bundled with several built-in classes to

abstract such tasks as database access and web interface construction. Ruby, the underlying

language, is an entirely object-oriented programming language based on Perl [6].

Conclusions

The literature shows a clear need for automated tools to store, organize, and facil-

itate the analysis of data. Research continues to improve the tools and techniques used

for storing and organizing information (data warehousing), sharing information between

different system (the semantic web), analyzing data, and building interfaces to datasets.

12

CHAPTER III

THESIS STATEMENT

A middleware system to facilitate the exploration, combination, organization, con-

version, and analysis of data sets will be designed and a prototype will be built. The design

and implementation of this system will be based on current research in the areas of data

mining, data warehousing, middleware, and information sharing through web services. Re-

search into these topic revealed the following criteria, which will be used to gauge the

effectiveness of the tool and its ability to contribute significantly to contemporary research

[5, 11]:

• Provide controls and management tools to access and view data

• Support a wide variety of operating environments

• Support a wide range of data sources

• Support the propagation of both incremental changes and full extracts

• Support source data transformations

• Support data cleansing (removing inconsistent records from the data set)

• Support documented SQL and other open interfaces for third-party and user-defined

code

Description of System Components

The system designed for this thesis will consist of the following primary compo-

nents: a relational database for storage of cached data and configuration information, a

web-based data import and management interface, a middleware layer to handle database

13

connections and other tasks related to low-level data processing, and a web service interface

to export processed data to analysis tools in XML format.

The relational database will store metadata that has been generated from external

data sources, processed data that has been cached, data transformation settings, data ex-

port settings, and user login information. PostgreSQL, an open-source object-relational

database system based on the University of California, Berkeley’s POSTGRES [1], was se-

lected as the database server for this thesis. PostgreSQL is available at no cost, operates on

many different server platforms, and has a feature set comparable to commercial enterprise

database servers. Also, PostgreSQL is being used successfully by several companies and

research organizations (such as the U.S. Centers for Disease Control).

The web-based management interface will provide a user-friendly interface to the

middleware functions, configuration database, imported datasets, data transformations, and

exported datasets. This interface will provide tools for managing access to the system

(creating users and changing user passwords), importing data from various sources, pre-

viewing datasets, exporting data, and managing caching and transformation of source data

while maintaining compatability with all modern web browsers and operating systems.

The middleware component will provide underlying functionality to the manage-

ment interface and web service interface by handling database connections, authenticating

user logins, managing configuration information, caching data, and applying data transfor-

mations.

The web service interface will make data available in XML format through a unique

URI. Exported data may be taken from one or more datasets and transformed or combined

as configured by the user.

Ruby on Rails was chosen as the development environment for the web interface,

middleware component, and web services interface. Ruby on Rails offers a powerful,

object-oriented programming language and a modern approach to rapid application devel-

14

opment. Also, Rails provides built-in support for many modern database systems, including

MySQL, Microsoft SQL Server, and PostgreSQL.

Definition of Terms

The following terms as used in this thesis may differ from their common definition

or have multiple accepted meanings depending on context. To avoid ambiguity, the terms

below will be used throughout this thesis as described in this section.

• Dataset – A collection of data. This may be composed of one or more relational

database tables. For this thesis, it is assumed that the dataset is stored in some form

of relational database.

• Export – A dataset made available to an external application for analysis as config-

ured by the user. The system will not limit the number of fields or records exported.

An export may be made up of several source datasets that have been processed by

the middleware component.

• Exported field – A particular field from a table in a dataset that is selected for export.

An exported field may be exported under its original name or a new name. (If the user

wishes to combine similar data from two sets it would be advisable to use uniform

field names for similar data). Transformations may be applied to an exported field.

• Transformations (or Transforms) – Changes applied to exported fields. Transfor-

mations may be necessary to clean up data, properly filter out inappropriate values,

truncate text fields, or scale numeric fields.

• SQL – Structured Query Language. Common, but not necessarily standard, language

used by many database engines for viewing, updating, inserting, and deleting data.

SQL can also be used to create or alter the schema of a relational database. When

15

SQL is referenced throughout this thesis, it is strictly referring to the subset of SQL

common to most modern database engines (such as PostgreSQL, Microsoft SQL

Server, Oracle, and MySQL).

16

CHAPTER IV

DESCRIPTION OF ALGORITHMS

The purpose of this thesis is to design a system to explore, combine, organize,

transform, and export datasets. The ability to access data from disparate datasets through a

unified interface is essential to this goal. To accomplish this, a simple but effective method

of reading data from each data source was designed and implemented. This method was

expanded to support table joins and save computation and transmission time by caching

processed data.

Reading Data

Initially, the system was designed to read data from source databases using the

following simple method:

Algorithm 1: Simple data access method
(1) foreachd ∈ datasets

(2) foreach t ∈ dtables

(3) query ← GENERATE QUERIES(export)

(4) results← results ∪ EXECUTE(query)

(5) RENDER XML (results)

Queries are generated based on which fields and tables are configured for export

from remote datasets. In lines 1-3 in algorithm 1, each dataset configured for export is

examined and a query is generated to read the exported fields and tables from the remote

data source. On line 4 the query is executed on the remote database and the resulting

records are stored in the result set. After all queries have been executed, the entire result

set is rendered in XML for display (line 5). (Details of connecting to remote databases have

been left out of this section as they are not essential to understanding the algorithms used

17

for data extraction. A thorough explanation of how database connectivity between multiple

remote sources was accomplished can be found in theImplementation Detailschapter).

This method performed adequately for simple exports with no transformations, but

it had limitations. Using this method, it was not possible to join tables from different

data sources. Implementing joins between tables on the same database could have been

implemented by making a simple modification to the query generation function. Joining

tables from different databases could not be achieved as easily. Another drawback to this

method is that transformations must be applied each time the export is read, which may

be quite CPU-intensive and slow. It became clear that some form of data caching was

necessary to perform joins on tables from different databases and improve performance

when data transformations are used.

Data Caching

Caching of remote data is clearly necessary in order to accomplish the goals set

forth in this thesis. Joining two tables from datasets on different servers would not be

possible without caching. (Joining databases on different servers from the same vendor

may be possible without caching by using proprietary functionality. While this would

work for a limited set of database severs it is not an inclusive or acceptable solution for this

thesis). Also, since responsiveness and availability of remote database servers can vary,

caching data improves response time and reliability while reducing the load on the network

and remote database servers.

The caching scheme used for this thesis resembles simple replication. Only the

fields requested from the external data source are stored in a cache table locally and any

query requiring those fields can simply query the cached data, provided it has not expired

or become corrupt. Also, querying cached data requires no conditions or transformations

as these are handled prior to caching. This technique is known as sub-table caching [2].

18

Algorithm 2: Dynamic merged cache/query algorithm
(1) if Cacheconfig ∧ (Cacheexpired ∨ Cachedirty)

(2) Cacheupdate ← true

(3) if ¬Cacheconfig ∧ J 6= ∅
(4) Cacheupdate ← true

(5) if Cacheconfig ∨ J 6= ∅
(6) Cacheread ← true

(7) queries← GENERATE QUERIES(export)

(8) Tc ← ∅
(9) foreach q ∈ queries

(10) if ¬Cacheread ∨ Cacheupdate

(11) results← EXECUTE(q)

(12) if Cacheupdate

(13) STORE IN CACHE TABLE(results)

(14) Tc ← Tc ∪ CACHE TABLE NAME(q)

(15) else if¬Cacheread

(16) result set← results

(17) else ifCacheread

(18) Tc ← Tc ∪ CACHE TABLE NAME(q)

(19) if Cacheread

(20) if J 6= ∅
(21) foreach j ∈ J

(22) result set← result set ∪ jtable1 ./ jtable2

(23) Tc − {jtable1, jtable2}
(24) foreach t ∈ Tc

(25) result set← result set ∪ QUERY CACHE TABLE(t)

(26) RENDER XML (result set)

The algorithm used for this thesis merges caching and querying of data. This will be

referred to as the dynamic merged cache algorithm, or simply DM. The DM algorithm first

determines if caching is used at all (based upon the configuration of the exported dataset

and whether joins are included in the export) and if the cached data needs to be refreshed

(based upon the expiration date and estimated consistency of cached data).

19

Algorithm 2 illustrates the DM algorithm. Lines 1 through 6 examine the configu-

ration and state of the cached data to determine how to set the two control variables which

determine the execution plan. These variables areCacheupdate andCacheread.

Algorithm 3: Algorithm to generate queries of source datasets
GENERATE QUERIES(export)

(1) Q← ∅

(2) D ← GET DATASETS(export)

(3) foreachd ∈ D

(4) T ← GET TABLES EXPORTED(d)

(5) foreach t ∈ T

(6) q ← “SELECTtfields FROM t”

(7) if Cacheupdate ∧ Cachetype = incremental

(8) if isset(tablekey field)

(9) max← MAX(Cachekey field)

(10) q ← q + “ WHERE keyfield > max”

(11) Q← Q ∪ q

(12) return Q

Cacheupdate indicates whether the cache requires updating. This is initialized as

false (not shown in the algorithm) but can be set to true on line 2 if the exported dataset

is configured to use caching (Cacheconfig is true) and one of the following conditions are

also true: the cache has expired (Cacheexpired is true) or the cache has become inconsistent

(Cachedirty is true). Cacheexpired is true if the expiration date of the cache has passed.

Cachedirty is true if the cache is potentially inconsistent. A “dirty” or inconsistent cache

occurs when the user makes configuration changes to the export. By adding fields, remov-

ing fields, adding joins, or adding transforms, the user changes the expected output of the

export. The information already in the cache tables must be replaced.Cacheupdate will also

20

be set to true if joins are used and caching is not configured (lines 3-4). Joins require the

use of cache and it is assumed that no pre-existing cached data is available if caching has

not been configured for this export.

Cacheread indicates whether the export is read from cache (as opposed to read

directly from the source database). This is initialized as false and will be set to true if the

export is configured to use caching (Cacheconfig is true) or the export contains any joins

(lines 5-6). As explained above, joining tables requires the use of caching even if caching

is not configured for the export. (In the situation where joins are used and caching is not

configured, the cache is generated to perform the export and is immediately discarded.

Subsequent reads of the exported dataset will still read data from the source databases,

cache the data, perform joins, and proceed to discard the cached data). In the DM algorithm,

joins are stored in the setJ . WhenJ is not empty (J 6= ∅) then one or more joins have

been configured for the export. Populating the setJ is accomplished by simply reading

join details from a configuration table (not covered in the algorithm).

Line 7 calls a function to generate queries based upon the export configuration.

(The simple algorithm presented earlier uses this same method). This function returns a set

of all queries necessary to read data from remote data sources. Algorithm 3 illustrates the

steps involved in query generation. This algorithm will be discussed in detail later in this

chapter.

Line 8 simply initializes the set of cache tables (Tc) to the set. The set of cache

tables contains the names of local cache tables which may contain data to be exported. The

cache table names are unique and based upon the names of the corresponding data tables

from remote sources.

Line 9 begins the process of reading external (or cached) data by iterating through

the set of generated queries. If caching is not used (Cacheread is false) or the current cache

needs to be updated (Cacheupdate is true), the query is executed and the results are stored

21

in a temporary container calledresults(lines 10-11). Lines 12-18 present three mutually

exclusive possibilities. First, if a cache update is required, the results of the previously

executed query are stored in a cache table and that table is added to the set of available

cache tables (lines 12-14). If a cache update is not required (the condition on line 12 is

false) and the export will not be read from cache, then the results of the query are simply

added to the final result set (lines 15-16). Finally, if this export is to be read from cache,

the cache table associated with this query is stored in the set of available cache tables (lines

17-18). It should be noted that all operations performed in lines 10-18 occur for each of the

queries generated for the export.

For brevity, the application of data transformations was not shown in the DM algo-

rithm. Transforms are applied after remote database queries are executed and before the

results are stored in cache tables (or added to the final result set). Resulting records are

transformed simply by using the value of the field being transformed as the argument to

the defined transformation function. The original value is then replaced by the result of the

function.

After iterating through all queries, reading from remote data sources, and updating

cache if necessary, line 19 determines if the results are to be read from cache. (If caching is

not needed, then lines 19-25 are skipped altogether). If the export will be read from cache,

line 20 determines if there are any joins configured for this export. If joins are used then

the algorithm iterates through each configured join (line 21), performs the join on cache

tables and stores the results in the final result set (line 22), and removes the joined tables

from the set of available cache tables (line 23).

All remaining cache tables are read and added to the result set in lines 24-25. Joined

tables are removed from the set of available cache tables before this step to avoid data

duplication.

The final step in the DM algorithm is to render the complete result set in XML.

22

Analysis of the DM Algorithm

The speed of the DM algorithm (worst case) can be determined by identifying the

execution steps and conditions as follows:

Tgq + Nq ∗Q ∗Nr ∗ (T + Sc) + Nj ∗Qcj + (Nq − 2 ∗Nj) ∗Qc ∗Ncr ∗ S

WhereTgq is the time to generate queries,Nq is the number of queries,Q is the

time to execute a single query,Nr is the number of results,T is the time to apply data

transformations,Sc is the time to store the result record in a cache table,Nj is the number

of joins,Qcj is the time to execute a join query on cached tables,Qc is the time to execute

a query on a cache table (without joins),Ncr is the number of results from the cache table,

andS is the time to store results in the result set.

The time to generate queries is negligible and the number of queries will likely be

small. Time to execute queries on remote datasets can vary greatly, but due to the small

number of queries expected, query execution time should not affect overall execution time

significantly. Time to apply data transforms, store results in cache, and store records in the

result set can also vary greatly, but since they are all dependent on the result size they can

be simplified to one constant multiplier. With these assumptions, the above analysis can be

simplified to:

Nr + Ncr

The worst-case analysis simplifies to the number of results plus the number of

cached results. Since the execution time of the algorithm increases linearly with the number

of results, the algorithm can be expected to perform atO(n).

In the best-case scenario, the cache is up to date and there are no joins or transforms:

Nq ∗Qc ∗Ncr ∗ S

23

With the assumptions and simplifications described above, the algorithm is also

related linearly to the number of results. In this case, the algorithm iterates through the

result set only once. Since the worst and best case scenarios are both determined by the

number of results, the algorithm can be described as bounded by n, orΘ(n).

It is clear from the analysis that this algorithm is not optimized for speed. It could

take significant time to read and process a dataset entirely, depending on its size. The

purpose of this algorithm is to integrate the decisions and tasks necessary to read from

remote data sources, cache remote data if necessary, join tables from different datasets, and

deliver the results as a single dataset.

Table 1. Sample results of execution time in seconds for various scenarios

Total Records Data Operation Without Cache With Cache
2000 none 1.332195 0.615170
2000 none 1.304521 0.611286
2000 none 1.292177 0.620324
2000 cache update n/a 19.537353
1014 join 19.182868 0.513660
1014 join 19.233897 0.510997
1014 join 19.273681 0.509054
2000 transformation 5.562685 0.628351
2000 transformation 5.546536 0.614257
2000 transformation 5.585319 0.614521
2000 transformation 5.560045 0.613802
2000 transformation 5.567419 0.625720
2000 transformation and cache update n/a 23.302291

Table 1 shows a sample of execution times with and without caching using joins

and transforms. This experiment shows that caching improves export speed slightly when

transforms are not used. A nine hundred percent increase in speed can be observed when

data transforms are used with caching. The primary purpose of data caching is to make

24

joins between tables from different databases possible, but performance improvements are

a welcomed side effect.

The tests were performed on a dataset populated with random data. The dataset

consists of two tables (“datatable” and “itemstable”) with the following schema:

data_table

id: integer

item_name: string

item_value: float

item_date: datetime

items_table

id: integer

item_name: string

item_location: string

item_family: string

This test dataset was created to simulate a scientific dataset. The items table con-

tains a list of items where the item name was chosen at random from dictionary words,

the location was assigned randomly from a short list of cities, and the family was also

assigned randomly from a short list of possible values. A script was created to populate

the items table and data table. As the script created a new item, a random number of data

records were added for that item. In the data table, the item name was the same as the

name from the items table, the value was a randomly generated number, and the date was

randomly selected from a fixed time range. The id fields from both tables are automatically

incrementing unique integers.

Generating Queries

Algorithm 3 illustrates the method used to generate the queries that read remote

data sources. This function uses the export configuration to determine which tables and

25

fields from remote databases will be read and generates an appropriate, generic SQL query

to accomplish this.

In line 1, the set of generated queries (Q) is initialized to the empty set. Line 2

populatedD with all datasets being read by this export. To clarify, an export (which is

itself considered a dataset) may be made up of subsets of one or more remote datasets. In

order to know connection details and schema information, this function must examine the

datasets accessed for this export.

Line 3 iterates through each dataset. The first step in this loop is to populate the set

of tables from this data which the export will read (T) and proceed to iterate through these

tables (line 5).

Line 6 assigns a string value representing the default query to the variableq. The

variabletfields represents a comma-separated list of fields from the tablet.

If this export is configured to use caching and the cache type is incremental (line

7), the default query must be altered. Incremental caching requires that only the newest

records are read from the remote data source. A numerical field (keyfield) is necessary

to determine the age of the data. A keyfield can either be an incremental numeric id, a

timestamp, or any other type of field which can be used reliably to sort records in the order

in which they were added to the database. Line 8 determines if a key field has been set for

the table being queried. If so, the maximum value of this key field is determined (line 9)

and the query is amended to only retrieve records from the remote dataset that are newer

than the locally cached records (line 10).

Line 11 adds the query generated to the set of queries and execution returns to

iterating through tables and datasets if necessary.

Line 12 returns the set of all generated queries.

The execution time of this algorithm is dependent on the number of tables and

number of datasets in the export. Since these numbers should not grow very large, this

26

function is assumed to have negligible impact on the overall execution time of the DM

algorithm. The algorithm for generating queries offers a straight-forward procedure for

reading all records or new records, but it is highly dependent on configuration options and

use input. In an ideal representation (such as the pseudo-code presented in algorithm 3),

it can be assumed that everything is configured properly. In a real-world implementation,

however, a user may pick an inappropriate field as the key field or incorrectly configure

the export cache. Careful error checking is necessary when implementing an algorithm so

dependent upon user input.

27

CHAPTER V

IMPLEMENTATION DETAILS

An Apple OS X Server running Darwin Kernel 8.11.0 on a Power PC G5 CPU

was used for the prototype of this system. Implementation began with the installation and

configuration of PostgreSQL and Ruby on Rails on the server.

Management Interface

The web pages of the management interface were written in RHTML (HTML with

Ruby code embedded in it). From this interface the user is able to manage datasets, exports,

transforms, and users. Users may create, view, edit, explore, and delete datasets. When

creating a dataset, the user must specify the type of database and all information necessary

to connect to the database (hostname, database name, username, and password). Figure

4 shows the dataset management interface. This view allows the user to update details

about the dataset and displays important information about the dataset, such as the database

schema and which exports access the dataset.

Datasets may be viewed as a list from which the user can edit, delete, or explore

any of the existing databases. When a database is explored, the tables are displayed with

a list of fields and field types belonging to that table. By clicking on the table name the

user is presented with a preview of the data. The user may further explore the dataset by

typing custom SQL code. No commands that may alter the data (such as ALTER, INSERT,

UPDATE, or DELETE) are supported and will return an error message if entered. Figure 5

shows the dataset exploration interface in action.

The web interface provides similar facilities for creating, viewing, editing, and

deleting exports, transforms, and users. (Transforms have an interface for running the data

transform on test data to verify its operation). A detailed security model was not developed

28

Update Dataset Details

Name: Fish Contaminant Data

Database type: PostgreSQL

Database server: localhost
(Hostname or IP address of database server)

Database name: fish

Database username: fish
(Username to access database)

Database password: •••••••••••••••••••
(Only enter password to change)

Info: Large set of fish contaminant data from the
Michigan Department of Environmental
quality.

** Save changes to test db connection **

Save Dataset

Export Membership

Fish #1 (Test)

Dataset Schema

tblanalytes

analyteid [integer]
category [string]
entrygroup [integer]
class [string]
name [string]
abbreviation [string]
storetno [string]
mdchmindetectlimit [float]
mdchunits [string]
mdchanalytes [boolean]

tblfish

fishid [string]

Figure 4. Dataset management interface

for this implementation so it is limited to two classes of users: guests and authorized users.

Guests may view (but not create, edit, or delete) datasets, exports, and transforms. (A guest

user is also unable to test data transforms). Once logged in, a user is authorized to create,

edit, and delete datasets, exports, transforms, and users. Essentially, each user is an admin-

istrative user. The first user in a freshly installed system must be created manually within

the database or through an installation script.

29

SELECT name, category, class FROM tblanalytes Go

tblanalytes

name category class
Mercury (ppm) heavy metals heavy metal
Cadmium (ppm) heavy metals heavy metal
Zinc (ppm) heavy metals heavy metal
Selenium (ppm) heavy metals heavy metal
Lead (ppm) heavy metals heavy metal
Nickel (ppm) heavy metals heavy metal
Chromium (ppm) heavy metals heavy metal
Arsenic (ppm) heavy metals heavy metal
Copper (ppm) heavy metals heavy metal
fat (%) organics fat
Aroclor 1242 (ppm) organics PCB
Aroclor 1248 (ppm) organics PCB
Aroclor 1254 (ppm) organics PCB
Aroclor 1260 (ppm) organics PCB
Total PCB - Aroclor (ppm) organics PCB
Cong06 (ppb) organics PCB
Cong0508 (ppb) organics PCB
Cong0709 (ppb) organics PCB
Cong1517 (ppb) organics PCB
Cong18 (ppb) organics PCB
Cong22 (ppb) organics PCB
Cong25 (ppb) organics PCB
Cong26 (ppb) organics PCB
Cong28 (ppb) organics PCB
Cong31 (ppb) organics PCB
Cong33 (ppb) organics PCB
Cong1632 (ppb) organics PCB
Cong37-42 (ppb) organics PCB
Cong40 (ppb) organics PCB
Cong44 (ppb) organics PCB
Cong45 (ppb) organics PCB
Cong46 (ppb) organics PCB
Cong47 (ppb) organics PCB

Figure 5. Dataset exploration interface

Relational Database

The database component stores all the objects managed through the web interface

(datasets, exports, transforms, and users) as well as information that supports system func-

tions and cached data from datasets. The additional objects stored in the database are joins,

exported fields, and metadata fields. These objects are explained in more detail in theMid-

30

dlewaresection of this chapter. Cached data is stored in dynamically created tables, which

are given names that have been generated from data source queries.

Ruby on Rails uses Ruby code to define the database schema rather than allow-

ing the user to manipulate the database schema directly. Changes to the schema may be

made by adding a file containing Ruby code to the db/migrate directory inside the Rails

application. When the Rails commandrake db:migrateis executed the new file performs

alterations to existing tables or creates new tables. A schema change may be rolled back in

order to return the database to a previous revision.

Listing 1 shows the Ruby code used to create the datasets and metadatafields ta-

bles. This code uses the class ActiveRecord::Schema, which is part of the Ruby on Rails

installation. This and the ActiveRecord::Migration provide a structured interface by which

databases used in Rails applications are managed.

Thedatasetstable contains database connection information for all datasets added

to the system. Themetadatafields table contains information about fields stored in each

dataset and is updated whenever a new dataset is added or updated. This table stores the id

of the dataset, a custom name for the field (may be different than the name from the original

dataset), the table name, the original field name, a unique name (generated by concatenating

the datasetid, tablename, and originalname), a sample of distinct values from this field in

the source database, and an indicator of whether this field is a key field. (A key field is used

for incremental caching. If a field is designated as a key field it is understood that it is some

sort of unique, numerical identifier in the source database. Using a key field, it should be

possible to update a cache table by getting only records from the source database where the

value of this field is greater than the maximum value of the corresponding cached field).

31

Listing 1. Sample of database schema defined in Ruby

1 create_table ‘‘datasets’’, :force => true do |t|

2 t.string ‘‘name’’

3 t.string ‘‘info’’

4 t.string ‘‘connection_type’’

5 t.string ‘‘connection_host’’

6 t.string ‘‘connection_user’’

7 t.string ‘‘connection_pass’’

8 t.string ‘‘connection_name’’

9 end

10 create_table ‘‘metadata_fields’’, :force => true do |t|

11 t.integer ‘‘dataset_id’’

12 t.string ‘‘name’’

13 t.string ‘‘table_name’’

14 t.string ‘‘original_name’’

15 t.string ‘‘field_type’’

16 t.string ‘‘unique_name’’

17 t.string ‘‘distinct_values’’

18 t.integer‘‘key_field’’

19 end

Middleware

The middleware component provides all the necessary functionality to allow the

management interface (and web service interface) to interact with the database. In Rails,

the controller code is implemented in Ruby using Rails classes. The main class provided

by Rails is ActiveRecord. ActiveRecord provides functionality for database connections,

queries, updates, and schema manipulation. A typical database-driven web application de-

veloped with Rails would use the ActiveRecord::Base class for all database access needs.

For this application, database objects created through Rails were accessed in this way. Dy-

32

namic database content (such as cache tables and external datasets) could not be accessed

in such a simple manner.

Listing 2. Standard ActiveRecord method of reading and updating data

1 export = Export.find_one(id)

2 # Display export information:

3 puts export.name

4 puts export.description

5 puts export.cache_type

6 # Update cache_dirty attribute

7 export.cache_dirty = true

8 # Save export to database

9 export.save

Listing 2 demonstrates the use of a standard Rails database object. The code locates

an export in the database which matches an id (usually supplied as a parameter to a web

page) and displays some of the attributes of the export. (For this simple example error

checking was omitted). The“cachedirty” attribute is then set to true (which would trigger

a cache update) and the change is saved to the database. Note the lack of any SQL in the

code. Rails automatically generates the necessary SQL code but abstracts this from the

programmer. This serves to simplify the process as well as make database access safer

and more reliable. A drawback to this method is that the database must conform to the

conventions required by Ruby on Rails.

In order to access dynamically generated tables (which do not have predefined mod-

els or schema) it is necessary to use SQL and additional database connections. ActiveRe-

cord provides several methods to do this.

Listing 3 demonstrates how to connect to a database server and execute a query

using ActiveRecord. DbAccess is a class that inherits from ActiveRecord::Base. This new

33

Listing 3. Manual database connection

1 DbAccess.clear_active_connections!

2 DbAccess.clear_reloadable_connections!

3 DbAccess.remove_connection

4 this_dataset = Dataset.find(dataset_id)

5 DbAccess.establish_connection(

6 :adapter => this_dataset.connection_type,

7 :host => this_dataset.connection_host,

8 :database => this_dataset.connection_name,

9 :username => this_dataset.connection_user,

10 :password => this_dataset.connection_pass

11)

12 DbAccess.table_name = query_table_name

13 data_results = DbAccess.find_by_sql(query);

class works in the same way as theExportclass in listing 2 and theDatasetclass in listing

3 except thatDbAccessis not associated with a database table automatically. One must

manually set the table name (as shown in line 12) or Rails will assume there is a database

table called“dbaccesses”. Instead of reading this table as expected, DbAccess is connected

to a remote database using connection information stored in the Dataset object and executes

a custom query. This query is generated using the metadata associated with this dataset.

The function“findby sql” executes the query exactly as entered. The documentation for

this function stresses that it should be a“last resort” for querying a database. Since Rails

performs no validation on the query, potentially harmful SQL code or database-specific

code can be executed. For this implementation this “last resort” technique was necessary,

since there is no way to anticipate the schema of external datasets while remaining flexible

enough to allow new datasets to be added through the web interface.

34

Metadata Discovery

When a new dataset is added the middleware component reads table information

from the source database. Table names, field names, and field types are stored in the con-

figuration database in the metadatafields table. The user may specify a new name or keep

the original name of the field. (The original name is retained for purposes of generat-

ing queries during export). A small sample set of the values for that field are stored in

the distinctvalues field. This gives the user an idea about the range of data stored in the

field. Listing 4 demonstrates how the application connects to a remote database and iterates

through all the tables and fields and stores the metadata.

Caching

Cache tables are created dynamically and populated with processed data from re-

mote data sources. The name of a cache table contains the id of the export and the name

of the source table concatenated with other identifying information in order to ensure the

table name is unique. A cache table contains only those fields from the source database

table that have been chosen for export.

Web Service Interface

The web service interface utilizes the middleware and database components in

much the same way as the management interface. The main differences between this view

and the management interface are that the web service is completely XML and is read-only.

Figure 6 shows the export management interface. It is through this view that the

user configures what fields are exported through the web service view. This view allows

the user to configure caching options, add or remove fields, add or remove transformations,

and add or remove joins.

Figure 7 shows the interface for adding new fields to an export. The user first

chooses which dataset to select fields from and is then presented with all the fields available

35

Configure Export Details

Name: Fish #1 (Test)
 [Export URL] [Time Test]

Description: First testing data export using Fish
data.

Security: Public Private

Cache status: expired (Update Cache Now)
Cache expiration: Sun Oct 19 20:28:21 EDT 2008

Cache Type: None Incremental Full

Save Export

Manage Exported Fields:

 Field Name Type Table Name Key Field Transform
edit del analyteid integer tblanalytes
edit del name string tblanalytes
edit del mdchunits string tblanalytes
edit del sampleid string tblsampleanalyte
edit del analyteid integer tblsampleanalyte
edit del concentration float tblsampleanalyte

Add Exported Field(s)

Manage Joins:
Joins make it possible to merge records across data tables.

(tblanalytes).analyteid with (tblsampleanalyte).analyteid [Delete]
(tblanalytes).analyteid with (tblsampleanalyte).analyteid [Delete]

Add a Join

Figure 6. Export configuration interface

in that dataset. The user is shown the field name, data type, table name, and distinct values

for each field.

Figure 8 shows the interface for adding new joins to an export. The user selects the

tables to join and which fields to join on. The system uses an INNER JOIN, so the order of

the tables affects the results of the join.

36

Select Dataset and Fields

Selected dataset: Fish Contaminant Data

Select field(s):
field type table distinct values

 class string tblanalytes Aldrin ,DDT ,PBB ,PCB ,Terphynyls

 entrygroup integer tblanalytes 0,1,2,3,4

 abbreviation string tblanalytes

 storetno string tblanalytes

 name string tblanalytes

 mdchanalytes boolean tblanalytes f,t

 mdchunits string tblanalytes ,ppb ,ppm

mdchmindetectlimit
float tblanalytes 0

 analyteid integer tblanalytes 1,2,3,4,5

 category string tblanalytes heavy metals ,organics

 weight float tblfish 0,0.3,0.4,0.5,0.6

 length float tblfish 0,3.5,3.7,4,4.1

 visitid string tblfish 1998000 ,1998006 ,1998011 ,1998015 ,1998019

 sex string tblfish ,F ,M ,m

 age integer tblfish 0,1,2,3,4

 comment string tblfish

 compcomment string tblfish

 observations string tblfish

 modifieddate datetime tblfish
2001-01-01 00:00:00,2001-01-02
00:00:00,2001-04-05 00:00:00,2001-05-04
00:00:00,2001-05-05 00:00:00

 modifiedby string tblfish ,BARKERJM ,BOHRJ ,Bohr ,DAYRM

 createddate datetime tblfish
2001-01-01 00:00:00,2001-01-02
00:00:00,2001-04-05 00:00:00,2001-05-05
00:00:00,2003-01-06 00:00:00Figure 7. Export field section interface

Figure 9 shows the interface for adding new transforms to an export. The user must

name the export, write a short description, select the input type (float, int, string, or nil),

select the output type (float, int, string, or boolean), and then enter Ruby code to perform

the actual transformation. The data is passed to the function as a variable called “input”.

Once the transformation is saved it may be tested through a separate interface (see figure

10).

37

Enter Join Details

Available tables: tblanalytes, tblsampleanalyte

Table 1 Name: tblanalytes

Table 1 Field: (tblanalytes).analyteid

Table 2 Name: -- Select Table 2 --

Table 2 Field: -- Select Field --

Add Join

Figure 8. Join configuration interface

Configure Transform Details

Name: scale_float(100)

Description: Scale a float value by 100 (increase)

Input Type: Float

Output Type: Float
Boolean output types will cause a record to be discarded (filtered) if the value returned is false.

Code Type: Ruby

Code: (Input data passed as a variable called "input")
input = input.to_f
input *= 100

Example: input.slice(0..10)

Save Transform

Figure 9. Transform configuration interface

Transforms can manipulate the data by scaling, adding, subtracting, or truncating

the input. Transforms that return a boolean value can be used to filter or clean the source

data. For example, if only data within a certain range is desired, the user can write a

38

Test Transform

Output:

570.0

Input type: Float
Output type: Float

Test Value: 5.7

Code: * input = input.to_f
input *= 100

* Code changes will not be saved to transform.
Click here to edit this transform.

Test

Figure 10. Transform test interface

function that returnstrue when the data falls within that range andfalsewhen it does not.

The system will not export any records in which a transform returns a value of false.

Once exported fields, joins, and transforms are configured, the user can see the

results of the export by clicking on theExport URL on the export interface. Data returned

from a remote data source query or local cache query is in the form of an array with database

columns as attributes of each item in the array. Ruby’s render method converts the entire

array into a properly formatted XML document as shown in listing 5.

39

Listing 4. Database connection and metadata discovery

1 DbAccess.establish_connection(

2 :adapter => dataset.connection_type,

3 :host => dataset.connection_host,

4 :database => dataset.connection_name,

5 :username => dataset.connection_user,

6 :password => dataset.connection_pass

7)

8 DbAccess.connection.tables.sort.each do |table|

9 DbAccess.connection.columns(table).each do |column|

10 metafield =

11 MetadataField.

find_or_initialize_by_unique_name(

12 :unique_name => this_unique_name,

13 :dataset_id => params[:id],

14 :table_name => table,

15 :original_name => column.name,

16 :name => column.name,

17 :field_type => column.type.to_s)

18 if metafield.new_record?

19 metafield.save

20 end

21 end

22 end

40

Listing 5. Example XML export

1 <?xml version="1.0" encoding="UTF-8"?>

2 <results type="array">

3 <result>

4 <analyteid type="integer">1</analyteid>

5 <concentration type="NilClass">0.31</

concentration>

6 <id type="integer">1</id>

7 <mdchunits></mdchunits>

8 <name>Mercury (ppm)</name>

9 <sampleid type="NilClass">1998000-S01</sampleid

>

10 </result>

11 <result>

12 <analyteid type="integer">1000</analyteid>

13 <concentration type="NilClass">11.8</

concentration>

14 <id type="integer">2</id>

15 <mdchunits></mdchunits>

16 <name>fat (%)</name>

17 <sampleid type="NilClass">1998000-S01</sampleid

>

18 </result>

19 </results>

41

CHAPTER VI

CONCLUSIONS

The purpose of this thesis was to design and implement a system to organize and

combine datasets for analysis. The design and implementation were based on current re-

search in data warehousing, middleware, and web applications. A set of seven criteria

chosen from current literature describe the functional requirements of this system. Data

caching techniques were designed and implemented in order to meet the core criteria.

Also, the ability to join tables from different databases was made possible through this

system. Joining tables between different databases of the same type is currently possible

with proprietary extensions, but this thesis delivers the capability to join two tables from

two different databases regardless of the location or type of database each table belongs to.

This feature is dependent on the time necessary to extract data from remote data sources

and the availability of local storage space required to cache remote data.

Provide controls and management tools to access and view data

Controls and management tools were created with Ruby on Rails and made avail-

able through a web interface. This interface allows a user to access external data sources,

preview source data, configure exported data, and configure data transforms.

Support a wide variety of operating environments

When developing the prototype, tools and techniques that maximized cross-

platform compatability were chosen. The areas of focus for this criterion are the server

environment, database engine, and user interface.

The server application was created with Ruby on Rails. This programming envi-

ronment is available for most modern operating systems, including Linux, MacOS, and

42

Windows. Ruby is an interpreted language, so it will run on any supported system with

little or no modification to the code once Ruby on Rails is installed and configured.

The prototype system uses PostgreSQL as the configuration and caching database;

however, any relational database supported by Rails may be used in place of PostgreSQL.

PostgreSQL was chosen because it has been ported to most modern server platforms.

The user interface is entirely web-based and should work with any recent web

browser and operating system. Only simple, standard HTML code was used to create

the interface. Recent advances have brought about more desktop-like web interfaces (such

as AJAX) but these technologies may behave differently depending on which browser (and

which version of a particular browser) is used. The interface was tested using Ubuntu

Linux, MacOS X, and Windows XP with various web browsers, including Firefox (version

2 and 3), Internet Explorer, Safari, and Google Chrome.

Support a wide range of data sources

The data sources supported by this thesis are remote databases from various ven-

dors. The ActiveRecord class provided by Ruby on Rails supports adapters for many dif-

ferent relational database servers. This includes popular free and open-source databases

such as PostgreSQL, MySQL, and SQLite, as well as commercial systems, such as Oracle

and Microsoft SQL Server. Some database adapters are not included with Ruby on Rails by

default and must be installed separately. At this time, only relational database servers are

supported as data sources. File-based data formats (such as Microsoft Access files, CSV

files, and XML files) are not supported directly, but a user could easily import these files

into a database server in order to make the data available to the application.

Support the propagation of both incremental changes and full extracts

The caching mechanism for exports offers three caching options: no cache, incre-

mental, and full. If no cache is selected the remote dataset is loaded each time the export

43

is requested. If incremental is selected only new records are loaded into cache (unless the

cache somehow has been corrupted or the exported fields have been changed). Finally, a

full cache type captures a snapshot of the entire source database at the time of caching.

Once expired, a full cache will be loaded again in its entirety from the source database. A

user may also manually clear and completely refresh the cache tables at any time, regardless

of the cache type.

A user may also configure data transforms to filter exports by any criteria. In this

fashion, the size and range of the output of the system can also be incremental. Ruby

provides a rich set of date and time functions which would make it simple for a user to

create an export limited dynamically by date or time (such as “all records from the last

thirty days” or all records from a particular year).

Support source data transformations

Data transformations may truncate data, replace text, scale data, convert data to

different data types, round numbers or perform any other tasks possible through Ruby

code. Users can test transformations before applying to exported data. Once a transform is

created it can be applied to an exported field through the export configuration interface.

A data transform is configured with an input and output type. The input types

configured for this system are string, integer, float, and nil. (A nil input type may be selected

when the user intends to replace the input with a fixed or random value, a timestamp, or

some other output function that does not depend on the input value). The output data types

are string, integer, float, and boolean.

Support data cleansing (removing inconsistent records from the data set)

Data cleansing or filtering is supported through transforms. As described in the pre-

vious section, transforms are configured with an output type. If the boolean type is selected,

the transform will return true or false. Records that return false will not be exported with

44

the rest of the dataset. (Filtered out records will, of course, remain in the source database

or cache tables). This functionality can be used to filter records of a certain age or data

outside a particulate range of numbers or string constants.

Support documented SQL and other open interfaces for third-party and user-defined code

Browsing the data available within a dataset is possible using standard SQL. A user

may explore the dataset using SQL SELECT statements but no SQL statements that could

potentially modify the source database will be processed. Disallowed functions include

INSERT, DELETE, UPDATE, DROP, and ALTER. If the user attempts to use any of these

SQL commands (either in the main query or a sub-query), an error message will be dis-

played.

The data transform interface also meets this criterion by allowing the use of standard

Ruby code.

Data Caching

While data caching was not part of the original seven criteria, it became a necessary

part of the prototype system. Data caching is accomplished by replicating subsets of remote

data sources within the configuration database. This serves to improve response time of

exports (particularly when data transforms are involved) and make it possible to join tables

from different datasets.

Remote Joins

A feature of this application is the ability to join tables from different databases.

While some database engines support joining tables from two different servers running the

same database engine, research has turned up no products that support joining tables from

different database engines. The application designed for this thesis can be configured to

45

join data from any two datasets that are configured in the system even if these datasets are

on different servers and are different database engines.

Remote joins are accomplished by caching fields from external data sources and

joining the locally cached tables. If an export has not been configured to use caching, a

temporary set of cache tables is created, joined, and then discarded after the results are

exported. Exports configured to use caching will respond much more quickly (unless the

cache tables need to be refreshed).

Future Work

While this thesis uses metadata and allows the user to view metadata information

(such as table structures and distinct values), no facility for exporting metadata has been

included.

This system imports data from relational databases only. While a wide variety of

database systems are supported, text-based data formats, such as Comma Separated Value

(CSV) and XML are not supported. Other common binary formats (such as Microsoft

Access) are also unsupported. These unsupported formats could be converted into a rela-

tional database (Microsoft SQL Server provides a simple tool for importing databases), but

this additional step may not be possible for all users due to lack of resources of technical

expertise.

In addition to expanding the range of data source types, it would be helpful to

expand the range of output types. Currently the only export format is XML. Export data

in CSV, SQL, and other formats may simplify the analysis process and give the user more

options when selecting data analysis tools.

Data transforms can only be written in Ruby. Transforms written in SQL may

improve performance by performing transformations on an entire result set at the database

level, as opposed to iterating through a result set and performing the transformation on

46

each record. The difficulty with using SQL is that not all database engines support the

exact same version of SQL. Introducing SQL code also makes it possible for a user to

inadvertently (or purposely) alter the source dataset.

Security was not a high priority when designing this system. The simple user hier-

archy implemented adequately prevents unauthorized users from changing dataset, export,

and transform information, but it is not sufficiently fine-grained enough to determine which

users have permission to change which objects. A more complex security system with ac-

cess control lists would be helpful, if not essential, if this application were to be accessed

by several users.

Exports are configured by picking fields from external datasets and applying trans-

forms or joins if required. Advanced users may find it easier and more flexible to configure

exports using one or more custom SQL queries. Such queries could pick database fields and

tables, perform data transformation and filtering, and even perform joins on tables within

the same dataset before bringing the data into the cache tables.

The system currently runs on a single server and has no mechanism for distributed,

grid-based, or agent-based operation. By distributing the workload over several servers or

across a greater area, it would be possible to improve the speed, efficiency, and capacity of

this system.

Recommendations

The benefits of sharing scientific data between and within organizations cannot be

denied. Many tools exist to make this possible but these tools often require significant

technical expertise to implement. More user-friendly commercial tools exist, but these

come at a higher price and often require additional yearly license fees.

Tools such as the one described in this thesis can offer a user-friendly, inexpen-

sive method of sharing data. It is recommended that researchers involved in collecting

47

large amounts of data consult with their information technology departments and setup

a proper database engine for structured, long-term, reliable storage of collected informa-

tion. College or university computer science departments may be able to offer assistance

if a research organization does not have the information technology resources to install or

manage a database server.

48

APPENDICES

49

APPENDIX A

MANUAL

This manual describes the features of the DM system version1.0. It is assumed

that the user has a properly installed and configured system already. All information about

installation and configuration are found in the Installation Guide. This user’s manual pro-

vides a brief overview of the system and detailed instructions on using each of the main

features. Advanced features are also covered.

Disclaimer

This software is available free of charge for any purpose, including (but not limited

to) educational and commercial. This software is provided on an “as is” basis without

warranty of any kind, express or implied.

Overview

The DM system allows a user to connect to one or more remote databases and ex-

port, combine, and explore the information contained within the data sources. DM does not

stand for anything in particular but it originally meant “datamining.” The main algorithm

implemented in this system became known as the “dynamic-merged caching algorithm” or

DM Algorithm.

This system was created by Wesley Leonard as part of a thesis project as part of the

requirements for a master’s degree in computer science from Central Michigan University.

Technical Details

The DM system was written in Ruby on Rails. Any relational database supported

by Ruby on Rails may be used as the main configuration and caching database. PostgreSQL

was used while developing this system and is the preferred database engine. Changes to the

50

database connection may be made by editing the “database.yml” configuration file found

in the “dm middleware/config” directory. See the Installation Guide or any reference that

covers Ruby on Rails database configuration for more details.

User Interface

The user interface is entirely web-based and should work with any modern browser.

The interface is divided into four main sections: Datasets, Exports, Transforms and Users.

Guest (or unauthenticated) users may view available datasets and exports, but only au-

thenticated users may perform any management tasks such as adding, editing, or deleting

objects.

If the system is being accessed for the first time, a user must login with the default

username and password. These values are “setup” and “fishfood”, respectively. After

initial login, it is up to the user to create a new user and delete the default user. (Leaving

the default user active may result in the system being accessed by unauthorized users).

Datasets

Datasets are the sources of data for the system. Currently, each dataset must be a

relational database engine that is supported by Ruby on Rails. Future releases may support

file-based datasets (such as CSV or XML files) or other methods of importing data.

Clicking on the datasets tab displays a list of all existing datasets and a truncated

descriptions of each dataset. The user can also click to add a new dataset or delete/edit/ex-

plore existing datasets.

Add

When adding a new dataset, the user specifies the dataset name (which must be

unique) and a short description of the dataset. The following database connection details

are also required: database type (chosen from a list of supported databases), database server

51

(hostname or IP address), database name, database username, and database password. If

the dataset was successfully added the user will be returned to the list of datasets.

Table 2. Supported database engines in Ruby on Rails

Supported Databases
MySQL
PostgreSQL
SQLite
SQL Server
IBM DB2
Informix
Oracle
Firebird/Interbase LDAP (ActiveLDAP)
SybaseASA (Sybase Adaptive Server Anywhere or SQL Anywhere Studio)
MonetDB (see http://rubyforge.org/projects/monetdb-ror)

Table 2 shows which database engines are currently supported by Ruby on Rails

and, by extension, this application. Table 3 lists database engines that are currently be-

ing implemented. See: http://wiki.rubyonrails.org/rails/pages/DatabaseDrivers for the most

up-to-date list of supported databases and databases in development.

Table 3. Database engines under development

Database Status
Cach Object interface almost implemented (SQL interface works)
OpenBase Works on OS X, Linux and Windows under development
SQLAnywhere C implementation (previously Sybase iAnywhere’s ASA)

Delete

A user may clickdel to completely remove any of the datasets listed. A prompt

is presented to confirm that the user really wants to delete the dataset. The user may click

cancel to keep the dataset orok to confirm deletion.

52

Edit

By clicking edit the user is taken to the dataset editing screen where dataset de-

tails, such as the name, description, and database connection information can be updated.

This screen also shows the export membership (which exports are configured to use this

dataset) and the database schema (tables, field names, and field types) of the dataset.

Explore

The user may preview the data contained in the source dataset by clicking

explore . Initially, the user is presented with the database schema where each table

is a clickable link. When the table name is clicked, the first fifty rows of data are pre-

sented to the user. The user may replace the default SQL statement (SELECT * FROM

TABLE NAME LIMIT 50) with any other valid SQL statement. Through this interface

the user can explore the entire database table, select a subset of fields from the table, experi-

ment with joins, determine distinct values, and get acquainted with the data. No commands

which could change the source database in any way are permitted. These forbidden com-

mands includeDELETE, INSERT, UPDATE, ALTER, andDROP.

Exports

Exports are subsets or combinations of data from source databases presented in

XML format. An export may apply transformations and joins to records from one or more

datasets.

Add

A name and description are all that is required to add an export. After adding a new

export the user is taken to the edit screen to continue configuration of the new export. The

export name must be unique.

53

Delete

From the exports list, a user may clickdel to completely remove an export. A

prompt is presented to confirm that the user really wants to delete the export. The user may

click cancel to keep the export orok to confirm deletion.

Edit

The edit screen is shown immediately after adding a new export or whenedit is

clicked on the exports list. From this screen the user can update the name and description

of the export as well as the cache type. Cache type choices include none (caching is not

used), incremental (new cache data is appended to existing cache data when refreshed),

and full (the entire cache is refreshed upon expiration). The edit screen also displays the

cache status for exports configured to use caching. Cache information can be clean (cache

is up-to-date), expired (cache has not been updated since the expiration time), or dirty (the

export configuration has changed and a cache update is required). A user may force a cache

refresh at any time by clickingUpdate Cache Now .

The list of fields included in the export is shown under theManage Exported

Fieldsheading. Exported fields may be added, edited, or deleted. The field name, data type,

table name, key field indicator, and data transforms (if applied) are listed for each exported

field. When adding a field, the user first selects the source dataset and then chooses fields

from this dataset for inclusion. When selecting a field, the field name, data type, table

name, and a small set of distinct values are shown. Distinct values give the user an idea

of what type of data is in the field and what constraints, if any, are placed on the data.

For example, distinct values may be limited to “yes” or “no”, a short list of string values,

or a small set of numbers. If incremental caching is used, the Key Field indicator can be

selected for only one field from each remote database table. Designing a field as the key

field means that it is used to determine the order in which records are added to the remote

54

dataset. With incremental caching, only records added after the locally cached records are

extracted from the remote data source. After adding a field a user may edit the field to

apply a data transform (the next section covers transforms in detail).

The edit export screen also supports the addition and deletion of joins. A join is

a database operation that brings together data from different tables based upon a common

piece of data (called a join predicate). Often joins are performed using a numeric identifier

as the join predicate but any type of data can be used to join tables. Adding a join to an

export requires selecting two tables and the join field from each table. A common reason

for joining tables is to build a more complete set of records for inspection or analysis. For

example, a database may have a table that stores employee information (including their em-

ployee id number, name, and office number). Another table may contain expenses charges

to an employee. This table would likely contain the employee id, amount of expense, date,

and description of the expense. These two tables could be joined using the employee id as

the predicate in order to generate a convenient list of expenses for one or more employees

which includes the employee name and contact information.

Export URL

TheExport URL link provides access to the actual exported data in XML format.

This link is found both on the list of exports and on the edit forms for each individual

export. This URL may be accessed through a standard web browser to preview the data,

downloaded to an XML file for analysis, or accessed by an analysis tool directly.

Transforms

Transforms allow the user to scale, filter, or simplify data for analysis. A good

example of when a scaling transform is useful is when data from two different datasets is

combined. One dataset may have used percentages (0 - 100) while another may have used

decimals (0.0 - 1.0). In this case the user could configure the DM system to scale down

55

the percentages by 100 or scale up the decimal values by 100 so that the datasets could be

combined and analyzed with the same set of tools.

Add

Adding a transform requires a name, description, input data type (string, float, in-

teger, or nil), output data type (string, integer, float, boolean), and a block of Ruby code.

The Ruby code provided is executed each time the export is viewed (or cached). For string,

integer, and float output types, the result of the code provided simply replaces the original

data value. If boolean is chosen as the output type, then a row of data will be skipped if the

transform code evaluates to false. In this way the user can set up constraints to ensure the

data falls within certain limits or matches certain criteria.

The value read from the database is passed into the code as a variable calledinput .

Here is an example of the code used to scale input by 100:

input = input.to_f

input *= 100

The first line verifies that the input is of type float by explicitly converting it. The

second line multiplies the input by 100. The value returned by the last line of the code is

what is returned.

Here is another example using a string input type:

input = input.slice(0..10)

This code truncates a string to ten characters.

Delete

A user may clickdel to completely remove any of the transforms listed. A prompt

is presented to confirm that the user really wants to delete the transform. The user may

click cancel to keep the transform orok to confirm deletion.

56

Edit

Editing a transform allows the user to change all fields including name, description,

input type, output type, and code. After adding or editing it is recommended that the

transform be tested to verify it works correctly.

Test

The transform test screen shows input and output type as well as the code for the

transform. A value can be placed in the test value field and the transform code will treat

that as if it was data read from a database. After clickingTest result is displayed.

Users

Users are authorized to login and perform all tasks available. In the current version

of the DM system there is no concept of security or differentiation between users.

Add

A new user may be added by supplying a name and password. This user will then

have access to all aspects of the application, including the ability to add and delete other

users.

Delete

A user may clickdel to completely remove any of the users listed. A prompt

is presented to confirm that the user really wants to delete the user. The user may click

cancel to keep the user orok to confirm deletion.

Edit

Clicking onedit will allow a user’s name or password to be changed.

57

Advanced Features

The features discussed in this section are built into the application but are not avail-

able through the standard user interface. These features may require the user to append

information to the standard URL or edit configuration files. Caution should be taken when

using any advance feature and backups of configuration files should be made prior to mak-

ing any changes.

Force Cache Update

Usually a cache update occurs after a certain length of time (the default for this

application is seven days) or when the export has been changed by adding or removing

fields, joins, or transforms. In some cases the user may wish to force a cache update. In

this situation, the user can append?cacherefresh=true to the export URL. (An export

URL will be in the formathttp://SERVERNAME:PORT/webservice/showexport/IDwhere

SERVERNAMEis the name or IP address of the server hosting the application,PORT is

the port number on which the application is running, andID is the export id number).

Speed Test and Export Details

A user may wish to learn more about the export without actually viewing the ex-

ported data. In this situation, the user can append?time test=true to the export URL.

This will cause the web service to execute all steps necessary to export the dataset but will

show information about the dataset in a standard web page instead of showing the data in

XML format. This feature is designed primarily for speed testing various export config-

urations. The information returned includes the time necessary to process the export, the

export name, the number of records exported, the number of joins used, whether caching

was used, whether the cache was updated, and the current cache expiration time.

58

Changing the Appearance of the Application

The appearance of the system is based on cascading style sheets (CSS). From

within the root directory of the application, the main style sheet ispublic/stylesheets/s-

tandard.css. A user with sufficient access to the server environment and privileges may

edit this file.

59

APPENDIX B

INSTALLATION GUIDE

This guide describes the requirements and actions necessary to install and configure

the DM system on a compatible server or personal computer.

Requirements

The DM system requires Ruby on Rails and a relational database server. These may

be installed on the same computer or two separate computers. The DM system has been

tested with the following configuration:

• MacOS X Server with Darwin Kernel 8.11.0, Power PC G5 CPU

• Ruby 1.8.2

• Rails 2.02

• PostgreSQL 8.2.4

Any operating system and hardware platform that supports Ruby on Rails should

be able to run the DM system. Software versions newer than those listed above should also

work. Ruby on Rails can be obtained fromhttp://www.rubyonrails.org . This

web site also provides extensive installation information and tutorials.

The DM system was developed with PostgreSQL

(http://www.postgresql.org) as the configuration database but should work with

any database supported by Ruby on Rails. See the DM User Manual or the Ruby on Rails

web site for information on which databases are currently supported.

60

Installation

The DM system files may be downloaded in one of three formats:

• Compressed tar archive (.tar.gz) – Appropriate for Unix-like systems such as Linux

and Apple OS X server. Copy the distribution file into the desired directory and

execute the command: tar -xzf filename.tar.gz

• Winzip file (.zip) – Appropriate for Windows or Unix-like systems. Copy this file

into the desired directory and extract it.

• VMWare image – A complete Ubuntu Server operating system with Ruby on Rails

and the application already installed. Simply load this into any compatible VMware

player and start.

If installing from an archive file (.tar.gz or .zip), copy this file into any directory

on the server and extract it. After extraction, a directory called “dmmiddleware” should

appear. This directory contains all Ruby code and configuration files for the system. This

directory may be moved anywhere on the server.

If installing from a VMWare image, simply load the image using VMWare player

or ESX server. An Ubuntu Linux server will boot up and the DM system will launch

automatically. The DM system will appear as a web site on port 8082 of the running

VMWare instance. The network on the system is configured to use DHCP. Log in with

the username “root” and the password “fishfood” to change network and system configu-

rations. This is the administrative account and it can only be accessed from the console.

Network logins for this user have been disabled. It is still highly recommended that you

create a regular user and change the root user password immediately. For more infor-

mation on Linux system administration seeThe Linux System Administrator’s Guideat

http://www.tldp.org/LDP/sag .

61

The VMWare image also provides a fully configured PostgreSQL server with the

configuration database already installed. Since there is no need to configure the database

with the VMWare version, the following section may be skipped.

Configuration

After extracting the system files into the desired directory, the configuration

database needs to be created on the database server. A new or existing user must have

permission to create, alter, and drop tables in the database. Also, the user should have

permission to select, insert, update, and delete records within tables in this database. Con-

figuration options vary between different database types. For most databases, the user will

simply be given the role of “database owner” on the configuration database. The database

may be given any name.

To configure the system to use the configuration database, change into the

dm middleware directory and open the fileconfig/database.yml . Under thepro-

duction: section, enter the database connection details as follows:

production:

adapter: DATABASE_TYPE

database: DATABASE_NAME

username: USERNAME

password: PASSWORD

host: HOSTNAME_OR_IP

In the example above, adapter refers to the type of database used. Consult the Ruby

on Rails web site for details. Common types includemysql , postgresql , andoracle .

Database, username, and password refer to the name of the configuration database, the

username needed to access the database, and the password, respectively. Finally, host is

62

the hostname or IP address of the database server. Use “localhost” if the database engine is

running on the same server as the DM system.

Starting the Application

The DM system is launched like any standard Ruby on Rails application. To launch

an instance of the application, change to the dmmiddleware directory and execute the

following command:

ruby ./scripts/server -p 8020

In the above command,ruby refers to the Ruby interpreter. If the Ruby interpreter is not

in the path of the user starting the system the full path to the Ruby executable may need to

be supplied. The final argument (8020) is the TCP port number. Any port number may be

substituted as long as the user has permission to open that port. On a Unix-like system, the

ampersand (&) may be added to the end of the launch command to put the process in the

background.

The method of starting processes at boot time differs between operating systems.

On a Unix-like system, the launch command may be placed in a script file that is executed

at boot time. In this situation, the full path to the Ruby interpreter and the “server” script

will need to be supplied. It is highly recommended that the command be executed by a user

with no administrative privileges.

Once started, the application will be available on the selected port. One can access

the application through a web browser. If a firewall is used on the system on which the DM

application is installed, be sure to open that port if other computers will need to access the

application.

63

APPENDIX C

SELECTED CODE

The following code makes up the controller portion of the application. All algo-

rithms presented in this thesis are implemented in this Ruby code.

Listing 6. Login Controller

1 class LoginController < ApplicationController

2 #

3 # Functions related to creating, editing, and

authenticating users.

4 #

5

6 layout "standard"

7

8 #

9 # Create a new user:

10 #

11 def add_user

12 @user = User.new(params[:user])

13 if request.post? and @user.save

14 flash.now[:notice] = "User #{@user.name}

created"

15 @user = User.new

16 end

17 end

18

19 #

20 # Edit user information:

21 #

22 def edit_user

23 @user = User.find(params[:id])

24 if request.post?

64

25

26 @user = User.update(params[:id], params[:user]);

27

28 if @user.save

29 flash.now[:notice] = "User #{@user.name}

updated"

30 else

31 flash.now[:notice] = "Error updating user"

32 end

33 end

34 end

35

36 #

37 # Process user login:

38 #

39 def login

40 session[:user_id] = nil

41 if request.post?

42 user = User.authenticate(params[:name], params[:

password])

43 if user

44 session[:user_id] = user.id

45 session[:user_name] = user.name

46 uri = session[:original_uri]

47 session[:original_uri] = nil

48 redirect_to(uri || { :action => "index" })

49 else

50 flash[:notice] = "Login failed"

51 end

52 end

53 end

54

55 #

56 # Process user logout:

57 #

65

58 def logout

59 session[:user_id] = nil

60 session[:user_name] = nil

61 flash[:notice] = "Logged out"

62 redirect_to(:action => "login")

63 end

64

65 #

66 # Delete a user:

67 #

68 def delete_user

69 if request.post?

70 user = User.find(params[:id])

71 user.destroy

72 end

73 redirect_to(:action => :list_users)

74 end

75

76 #

77 # Query all users:

78 #

79 def list_users

80 @all_users = User.find(:all)

81 end

82

83 #

84 # Authenticate user login information:

85 #

86 def authorize

87 unless User.find_by_id(session[:user_id])

88 session[:original_uri] = request.request_uri

89 flash[:notice] = "Please log in"

90 redirect_to(:controller => "login", :action => "

login")

91 end

66

92 end

93

94 end

95 ### End login_controller ###

Listing 7. Manage Controller

1 ###

2 ### Collection of classes and methods for managing

datasets

3 ###

4

5 #

6 # Abstract classed used for ad-hoc database access:

7 #

8 class DbAccess < ActiveRecord::Base

9 self .abstract_class = true

10 end

11

12 #

13 # A second abstract classed used for ad-hoc database

access:

14 #

15 class DbAccess2 < ActiveRecord::Base

16 self .abstract_class = true

17 end

18

19 class ManageController < ApplicationController

20 #

21 # Functions related to creating, editing, and

managing datasets and metadata

22 #

23

24 layout "standard"

25

26 #

67

27 # List of supported database types (a subset of types

supported by Rails):

28 #

29 def get_db_types

30 { "PostgreSQL" => "postgresql", "MySQL" => "mysql",

"Oracle" => "oracle" }

31 end

32

33 #

34 # Create a new dataset:

35 #

36 def add_dataset

37 @db_types = get_db_types

38 @dataset = Dataset.new(params[:dataset])

39 if request.post? and @dataset.save

40 flash.now[:notice] = "Dataset #{@dataset.name

} created"

41 redirect_to(:action => "list_datasets")

42 end

43 end

44

45 #

46 # Delete a dataset:

47 #

48 def delete_dataset

49 if request.post?

50 dataset = Dataset.find(params[:id])

51 dataset.destroy

52 end

53 redirect_to(:action => "list_datasets")

54 end

55

56 #

57 # View a dataset through SQL queries:

58 #

68

59 def explore_dataset

60 @dataset = Dataset.find(params[:id])

61 @metadata_fields = MetadataField.find(:all, :

conditions => ["dataset_id=?", params[:id]], :

order => "table_name ASC")

62 @metadata_tables = MetadataField.find(:all, :

conditions => ["dataset_id=?", params[:id]], :

select => "DISTINCT table_name")

63

64 if params[:table_name]

65

66 # Ad-hoc access to selected data source:

67 DbAccess.clear_active_connections!

68 DbAccess.clear_reloadable_connections!

69 DbAccess.remove_connection

70

71 DbAccess.establish_connection(

72 :adapter => @dataset.connection_type,

73 :host => @dataset.connection_host,

74 :database => @dataset.connection_name,

75 :username => @dataset.connection_user,

76 :password => @dataset.connection_pass

77)

78

79 DbAccess.table_name = params[:table_name]

80

81 @sql_statement = "SELECT * FROM " + params[:

table_name]+ " LIMIT 50"

82 @error_msg = ""

83

84 if params[:sql_statement]

85 # make sure no "UPDATE" or "DELETE" or other

statements used:

86 if params[:sql_statement].match(Regexp.new("

delete from", true))

69

87 @error_msg += "Cannot delete!!!"

88 elsif params[:sql_statement].match(Regexp.new

("insert", true))

89 @error_msg += "Cannot insert!!!"

90 elsif params[:sql_statement].match(Regexp.new

("update ", true))

91 @error_msg += "Cannot update!!!"

92 elsif params[:sql_statement].match(Regexp.new

("alter ", true))

93 @error_msg += "Cannot alter!!!"

94 elsif params[:sql_statement].match(Regexp.new

("drop ", true))

95 @error_msg += "Cannot drop!!!"

96 else

97 @sql_statement = params[:sql_statement]

98 end

99 end

100

101 begin

102 @table_data = DbAccess.find_by_sql(

@sql_statement)

103 rescue

104 @sql_statement = "SELECT * FROM " + params

[:table_name]+ " LIMIT 51"

105 @table_data = DbAccess.find_by_sql(

@sql_statement)

106 end

107 end

108

109 end

110

111 #

112 # Edit a dataset:

113 #

114 def edit_dataset

70

115 @db_types = get_db_types

116 @dataset = Dataset.find(params[:id])

117 if request.post?

118

119 @dataset = Dataset.update(params[:id], params[:

dataset]);

120

121 if @dataset.save

122 flash.now[:notice] = "Dataset #{@dataset.

name} updated"

123 else

124 flash.now[:notice] = "Error updating dataset"

125 end

126 end

127

128 # Scan dataset to update metadata and related

information:

129 @export_display = " <i>This dataset

is not included in any exports at this time.</i>

"

130 @schema_display = ""

131

132 field_ids = Array.new

133 export_ids = Array.new

134

135 metadata_fields = MetadataField.find(:all, :

conditions => ["dataset_id=?", params[:id]])

136 metadata_fields.each do |field|

137 field_ids.push field.id

138 end

139 if field_ids.length > 0

140 exported_fields = ExportedField.find(:all, :

conditions => { :field_id => field_ids })

141 exported_fields.each do |field|

142 export_ids.push field.export_id

71

143 end

144 exports = Export.find(export_ids);

145 @export_display = ""

146 exports.each do |export|

147 @export_display += " " + export.name + "</

li>"

148 end

149 @export_display += ""

150 end

151

152 DbAccess.clear_active_connections!

153 DbAccess.clear_reloadable_connections!

154

155 DbAccess2.clear_active_connections!

156 DbAccess2.clear_reloadable_connections!

157

158 if not @dataset.connection_type.empty?

159 begin

160 DbAccess.establish_connection(

161 :adapter => @dataset.connection_type,

162 :host => @dataset.connection_host,

163 :database => @dataset.connection_name,

164 :username => @dataset.connection_user,

165 :password => @dataset.connection_pass

166)

167

168 DbAccess2.establish_connection(

169 :adapter => @dataset.connection_type,

170 :host => @dataset.connection_host,

171 :database => @dataset.connection_name,

172 :username => @dataset.connection_user,

173 :password => @dataset.connection_pass

174)

175

176 DbAccess.connection.tables.sort.each do |table|

72

177 @schema_display += table + ""

178 DbAccess.connection.columns(table).each do |

column|

179

180 # Read schema information from remote data

source:

181 this_unique_name = params[:id] + "-" +

table + "-" + column.name

182 metafield = MetadataField.

find_or_initialize_by_unique_name(:

unique_name => this_unique_name, :

dataset_id => params[:id], :table_name

=> table, :original_name => column.name,

:name => column.name, :field_type =>

column.type.to_s)

183

184 @schema_display += "" + column.name

185 @schema_display += " [" + column.type.to_s

+ "] "

186

187 if metafield.new_record?

188 metafield.save

189 end

190

191 this_distinct_values = ""

192

193 begin

194 # Populate distinct_values field:

195 if metafield.distinct_values.to_s.empty?

196 DbAccess2.set_table_name(table)

197 DbAccess2.reset_column_information

198 distinct_sql = "SELECT DISTINCT " +

column.name + " AS distinct_val FROM

" + table + " LIMIT 5"

73

199 distinct_results = DbAccess2.

find_by_sql(distinct_sql)

200 if distinct_results != nil and

distinct_results.size > 0

201 distinct_results.each do |dv|

202 this_distinct_values += dv.

attributes["distinct_val"] + ","

203 end

204 metafield.distinct_values =

this_distinct_values.sub(/,$/,"")

205 metafield.save

206 end

207 end

208 rescue

209 end

210 end

211 @schema_display += ""

212 end

213 rescue

214 flash.now[:notice] = "Unable to connect to

database."

215 end

216 end

217

218 end

219

220 #

221 # Generate list of all datasets:

222 #

223 def list_datasets

224 @all_datasets = Dataset.find(:all)

225 end

226

227 end

228 ### End manage_controller ###

74

Listing 8. Webservice Controller

1 ###

2 ### Collection of classes and methods for and exporting

and transforming data

3 ###

4

5 #

6 # Abstract classed used for ad-hoc database access:

7 #

8 class DbAccess < ActiveRecord::Base

9 self .abstract_class = true

10 end

11

12 #

13 # A second abstract classed used for ad-hoc database

access:

14 #

15 class Result < ActiveRecord::Base

16 self .abstract_class = true

17 end

18

19 class WebserviceController < ApplicationController

20 #

21 # Configure exports and exported fields

22 #

23

24 layout "standard"

25

26 #

27 # Create a new export:

28 #

29 def add_export

30 @export = Export.new(params[:export])

31 @export.cache_dirty = true

32 @export.cache_expiration = Time.now

75

33 if request.post? and @export.save

34 flash.now[:notice] = "Export #{@export.name}</

b> created"

35 redirect_to({ :action => "edit_export", :id =>

@export.id })

36 end

37 end

38

39 #

40 # Remove an export:

41 #

42 def delete_export

43 if request.post?

44 export = Export.find(params[:id])

45 export.destroy

46 end

47 redirect_to(:action => :list_exports)

48 end

49

50 #

51 # Update an export:

52 #

53 def edit_export

54 @export = Export.find(params[:id])

55 @export.cache_type = @export.cache_type.to_i

56

57 export_id = params[:id]

58 @exported_fields = ExportedField.find(:all, :

conditions => ["export_id=?",export_id], :

order => "field_id")

59 @existing_joins = ExportJoin.find(:all, :conditions

=> ["export_id=?",export_id])

60

61 if request.post?

76

62 @export = Export.update(params[:id], params[:

export])

63 @export.cache_dirty = true

64 if @export.save

65 flash.now[:notice] = "Export #{@export.name

} updated"

66 else

67 flash.now[:error] = "Error updating export"

68 end

69 end

70

71 end

72

73 #

74 # List all exports:

75 #

76 def list_exports

77 @all_exports = Export.find(:all)

78 end

79

80 #

81 # Display an export in xml (implementation of DM

algorithm):

82 #

83 def show_export

84

85 @start_time = Time.now

86 ###

87 ### First, get info about the export being shown:

88 ###

89 this_export = Export.find(params[:id])

90

91 ###

92 ### Get info about exported fields:

93 ###

77

94 fields = ExportedField.find(:all, :conditions => [

"export_id=?",params[:id]])

95

96 ###

97 ### Load joins:

98 ###

99 joins = ExportJoin.find(:all, :conditions => ["

export_id=?",params[:id]])

100

101 ###

102 ### Store list of ids of metadata fields:

103 ###

104 ids = fields.map { |field| field.field_id }

105

106 ###

107 ### Get info from metadata fields:

108 ###

109 these_fields = MetadataField.find(ids, :order => "

table_name")

110

111 ###

112 ### Build quer(y|ies):

113 ###

114 @debug_msg = ""

115 dataset_ids = Array.new

116 queries = Array.new

117 query_fields = Array.new

118 query_table = ""

119 cache_tables = Array.new

120 new_data_results = Array.new

121 data_transforms = Hash.new

122

123 transformed_fields = ExportedField.find(:all, :

conditions => ["transform>0 AND export_id=?",

params[:id]])

78

124 transformed_fields.each do |trans_field|

125 tmp_field = MetadataField.find(trans_field.

field_id)

126 data_transforms[tmp_field.table_name+"."+

tmp_field.name] = trans_field.transform

127 end

128

129 # Loop through fields, organized by table name, and

build queries:

130 these_fields.each do |tf|

131 # Initialize query_table:

132 if query_table == ""

133 query_table = tf.table_name

134 dataset_ids.push tf.dataset_id

135 end

136 if query_table != tf.table_name

137 # Finish query, push onto list of queries:

138 queries.push "SELECT " + query_fields.join(",")

+ " FROM " + query_table

139 cache_tables.push "cache_table_" + params[:id]

+ "_" + query_table

140 # Add dataset_id to list of ids:

141 dataset_ids.push tf.dataset_id

142 # Reinitialize query_fields:

143 query_fields = Array.new

144 # Reinitialize query_table:

145 query_table = tf.table_name

146 end

147

148 # Add field name and transformed name to query:

149 query_fields.push tf.original_name + " AS " + tf.

name

150

151 if tf == these_fields.last

79

152 queries.push "SELECT " + query_fields.join(",")

+ " FROM " + query_table

153 cache_tables.push "cache_table_" + params[:id]

+ "_" + query_table

154 if this_export.cache_type == 1

155 # Add where clause:

156 # query += " WHERE " + key_field + " > " +

max_val

157 end

158 query_fields = Array.new

159 end

160 end

161

162 this_dataset = nil

163 j = dataset_ids.length - 1

164

165 ### Refresh cache flag:

166 refresh_cache = false

167

168 ### Cache-only query flag:

169 cache_query = true

170

171 ### Determine if cache needs to be refreshed or not

:

172 begin

173 if params[:cache_refresh] == "true" or

this_export.cache_dirty or this_export.

cache_expiration < Time.now

174 refresh_cache = true

175 end

176 rescue

177 end

178

179 if this_export.cache_type.to_i > 0 or joins.length

> 0

80

180 cache_query = true

181 else

182 cache_query = false

183 end

184

185 if refresh_cache or not cache_query

186

187 @debug_msg += "
Reading Records"

188

189 ####

190 #### Read records:

191 ####

192 for i in (0..j)

193 if this_dataset == nil or this_dataset.id !=

dataset_ids[i]

194 DbAccess.clear_active_connections!

195 DbAccess.clear_reloadable_connections!

196 DbAccess.remove_connection

197

198 this_dataset = Dataset.find(dataset_ids[i])

199 DbAccess.establish_connection(

200 :adapter => this_dataset.connection_type

,

201 :host => this_dataset.connection_host

,

202 :database => this_dataset.connection_name

,

203 :username => this_dataset.connection_user

,

204 :password => this_dataset.connection_pass

205)

206 end

207

208 query_table_name = queries[i].sub(/ˆ.+FROM / ,

"")

81

209 cache_table_name = "cache_table_" + params[:id]

+ "_" + query_table_name

210

211 DbAccess.table_name = query_table_name

212

213 data_results = nil

214

215 data_results = DbAccess.find_by_sql(queries[i]

);

216

217 if data_results != nil

218

219 if true or refresh_cache

220

221 ### Save cache state:

222 this_export.cache_dirty = false

223 this_export.cache_expiration = Time.now +

7.days

224 this_export.save

225

226 ###

227 ### Create cache tables:

228 ###

229 begin

230 ActiveRecord::Migration.drop_table

cache_table_name

231 rescue

232 ### Probably means the table does not

exist.. we’re OK.

233 end

234 begin

235 ActiveRecord::Migration.create_table

cache_table_name do |t|

236 data_results[0].attributes.each do |col

|

82

237 this_field = MetadataField.find(:

first, :conditions => ["

unique_name=?",this_dataset.id.

to_s+"-"+query_table_name+"-"+col

[0]]);

238 t.column col[0], this_field.

field_type

239 end

240 end

241 rescue

242 end

243

244 ###

245 ### Cache part:

246 ###

247 # cache_tables.push cache_table_name

248

249 Result.set_table_name(cache_table_name)

250 Result.reset_column_information

251

252 data_results.each do |dr|

253 attr_hash = Hash.new

254 show_record = true

255

256 dr.attributes.each do |da|

257 ### Here is where we can apply

transforms:

258 transform_id = 0

259 if data_transforms[query_table_name+"."

+da[0]] != nil

260 transform_id = data_transforms[

query_table_name+"."+da[0]].to_i

261 end

262 if transform_id.to_i > 0

83

263 attr_hash[da[0]] = apply_transform(

da[1], transform_id)

264 if attr_hash[da[0]] == false

265 show_record = false

266 break

267 end

268 else

269 attr_hash[da[0]] = da[1]

270 end

271 end

272

273 if show_record

274 if cache_query

275 new_cache_record = Result.new(

attr_hash)

276 new_cache_record.save

277 else

278 new_data_results.push attr_hash

279 end

280 end

281 end

282 end # if refresh_cache

283 end

284 end

285 end

286

287 if cache_query

288

289 joins.each do |j|

290 Result.set_table_name("cache_table_"+params[:id

]+"_"+j.table1_name)

291 Result.reset_column_information

292 query = "SELECT * FROM cache_table_"+params[:id

]+"_"+j.table1_name+" t1 INNER JOIN

cache_table_" + params[:id]+"_"+j.

84

table2_name+ " t2 ON t1."+j.field1_name+"=t2

."+j.field1_name

293 new_data_results += Result.find_by_sql(query)

;

294 @debug_msg += "
Query: " + query

295 cache_tables.delete("cache_table_"+params[:id]+

"_"+j.table1_name);

296 cache_tables.delete("cache_table_"+params[:id]+

"_"+j.table2_name);

297 end

298

299 cache_tables.each do |c_table|

300 Result.set_table_name(c_table)

301 Result.reset_column_information

302 query = "SELECT * FROM " + c_table

303 @debug_msg += "
Query: " + query

304 new_data_results += Result.find_by_sql(query)

;

305 end

306

307 end

308

309 unless params[:time_test] == "true"

310 render :xml => new_data_results

311 end

312

313 @export_name = this_export.name

314 @cache_used = cache_query

315 @cache_updated = refresh_cache

316 @cache_expiration = this_export.cache_expiration

317 @end_time = Time.now

318 @num_records = new_data_results.length

319 @num_joins = joins.length

320

321 end

85

322

323 #

324 # Add field(s) to an export

325 #

326 def select_exported_field

327

328 @show_dataset_select = true

329 @selected_dataset = ""

330 if request.post?

331 @show_dataset_select = false

332 @selected_dataset = Dataset.find(params[:

selected_field][:dataset_id].to_i).name

333 else

334 @datasets = Dataset.find(:all)

335 @dataset_options = {}

336 @datasets.each do |ds|

337 @dataset_options[ds.name] = ds.id

338 end

339 end

340

341 @all_done = false

342 @field_list = Array.new

343

344 if params[:export_id]

345 @export_id = params[:export_id]

346 else

347 @export_id = params[:selected_field][:export_id

]

348 end

349

350 #### See if dataset id is submitted:

351 if request.post?

352 if params[:selected_field][:dataset_id]

353

354 @selected_fields = Array.new

86

355 existing_fields = ExportedField.

find_all_by_export_id(params[:selected_field

][:export_id], :select => ["field_id"])

356 existing_fields.each do |ef|

357 @selected_fields.push ef.field_id

358 end

359 @field_list = MetadataField.find(:all, :

conditions => ["dataset_id=?", params[:

selected_field][:dataset_id].to_i],

360 :order => "

table_name"

)

361 end

362

363 @blorg = ""

364 if params[:selected_field_fields] != nil

365 @all_done = true

366 params[:selected_field_fields].each do |field|

367 @blorg += field + "
"

368 @metafield = MetadataField.find(field)

369 @exported_field = ExportedField.new({ :

field_id => field,

370 :export_id => @export_id,

371 :field_name => @metafield.name,

372 :field_type => @metafield.field_type,

373 :transform => "",

374 })

375 if @exported_field != nil and @exported_field

.save

376 @blorg += " - GOOD!
"

377 else

378 @all_done = false

379 #### Set error

380 break

381 end

87

382 end

383 end

384

385 #### If all is done, redirect to

add_exported_field:

386 if @all_done

387 redirect_to({ :action => "edit_export", :id =>

@export_id })

388 end

389 end

390

391 end

392

393 #

394 # Create a new exported field

395 #

396 def add_exported_field

397 if request.post?

398 @exported_field = ExportedField.new(params[:

exported_field])

399 if @exported_field.save

400 export = Export.find(@exported_field.export_id)

401 export.cache_dirty = true

402 export.save

403 redirect_to({ :action => "edit_export", :id =>

params[:exported_field][:export_id] })

404 end

405 end

406 end

407

408 #

409 # Delete an exported field:

410 #

411 def delete_exported_field

412 if request.post?

88

413 exported_field = ExportedField.find(params[:id])

414

415 export = Export.find(exported_field.export_id)

416 export.cache_dirty = true

417 export.save

418

419 exported_field.destroy

420 end

421 redirect_to(:action => :edit_export, :id => params

[:export_id])

422 end

423

424 #

425 # Edit an exported field:

426 #

427 def edit_exported_field

428 @exported_field = ExportedField.find(params[:id])

429

430 transforms = Transform.find(:all)

431

432 @transform_list = Hash.new

433 transforms.each do |trans|

434 @transform_list[trans.name] = trans.id.to_s

435 end

436

437 if request.post?

438

439 @exported_field = ExportedField.update(params[:id

], params[:exported_field])

440 if @exported_field.save

441 export = Export.find(@exported_field.export_id)

442 export.cache_dirty = true

443 export.save

444 flash.now[:notice] = "Export #{

@exported_field.field_name} updated"

89

445 else

446 flash.now[:error] = "Error updating exported

field"

447 end

448 end

449

450 end

451

452 #

453 # Show all exported fields:

454 #

455 def list_exported_fields

456 @all_exported_fields = ExportedField.find(:all)

457 end

458

459 #

460 # Show all transforms:

461 #

462 def list_transforms

463 @all_transforms = Transform.find(:all)

464 end

465

466 #

467 # Create a new transform:

468 #

469 def add_transform

470 @transform = Transform.new(params[:transform])

471 if request.post? and @transform.save

472 flash.now[:notice] = "Transform #{@transform.

name} created"

473 redirect_to({ :action => "edit_transform", :id

=> @transform.id })

474 end

475 end

476

90

477 #

478 # Remove a transform:

479 #

480 def delete_transform

481 if request.post?

482 transform = Transform.find(params[:id])

483

484 export = Export.find(transform.export_id)

485 export.cache_dirty = true

486 export.save

487

488 transform.destroy

489 end

490 redirect_to(:action => :list_transforms)

491 end

492

493 #

494 # Update a transform:

495 #

496 def edit_transform

497 if request.post?

498 @transform = Transform.update(params[:id], params

[:transform])

499 if @transform.save

500 flash.now[:notice] = "Transform #{@transform

.name} updated"

501 else

502 flash.now[:error] = "Error updating export"

503 end

504 else

505 @transform = Transform.find(params[:id])

506 end

507 end

508

509 #

91

510 # Add an export join:

511 #

512 def add_export_join

513

514 fields = ExportedField.find(:all, :conditions=>["

export_id=?",params[:export_id]])

515 tables = MetadataField.find(:all, :conditions=>["

id IN (?)",fields.map{|f| f.field_id}], :select

=>"DISTINCT table_name")

516 @table_names = tables.map{|t| t.table_name}

517 @table_fields = MetadataField.find(:all, :

conditions=>["id IN (?)",fields.map{|f| f.

field_id}], :order=>"table_name,name").map{|tf

| [tf.name, "("+tf.table_name+")."+tf.name] }

518 @table_fields_hash = Hash.new

519 @table_fields.each do |tf|

520 @table_fields_hash[tf[1]] = tf[0]

521 end

522

523 @export_join = ExportJoin.new(params[:export_join])

524 if request.post? and @export_join.save

525 export = Export.find(@export_join.export_id)

526 export.cache_dirty = true

527 export.save

528 flash.now[:notice] = "Join created"

529 redirect_to({ :action => "edit_export", :id =>

@export_join.export_id })

530 end

531 end

532

533 #

534 # Delete an export join:

535 #

536 def delete_export_join

537 if request.post?

92

538 join = ExportJoin.find(params[:id])

539

540 export = Export.find(join.export_id)

541 export.cache_dirty = true

542 export.save

543

544 join.destroy

545 end

546 redirect_to(:action => :edit_export, :id => params

[:export_id])

547 end

548

549 def test_transform

550 @transform = Transform.find(params[:id])

551 @output = ""

552 @test_code_block = @transform.code_block

553

554 if request.post?

555 code = "input = \"" + params[:test_value] + "\""

556

557 ### Determine input type:

558 if @transform.input_type.downcase == "integer"

559 code += ".to_i"

560 elsif @transform.input_type.downcase == "float"

561 code += ".to_f"

562 end

563

564 code += "\n" + params[:test_code_block]

565 @test_code_block = params[:test_code_block]

566

567 ### Determine return type:

568 if @transform.output_type.downcase == "integer"

569 code += "\ninput.to_i"

570 elsif @transform.output_type.downcase == "float"

571 code += "\ninput.to_f"

93

572 elsif @transform.output_type.downcase == "boolean

"

573 # code += "\ninput.to_b"

574 else

575 code += "\ninput.to_s"

576 end

577

578 @output = eval code

579 # @output = code

580 end

581 end

582

583 ###

584 ### Transformation tool:

585 ###

586 def apply_transform(val, transform_id)

587 ### Lookup transform by ID:

588 transform = Transform.find(transform_id)

589 code = "input = \"" + val.to_s + "\""

590

591 ### Determine input type:

592 if transform.input_type.downcase == "integer"

593 code += ".to_i"

594 elsif transform.input_type.downcase == "float"

595 code += ".to_f"

596 end

597

598 code += "\n" + transform.code_block

599

600 ### Determine return type:

601 if transform.output_type.downcase == "integer"

602 code += "\ninput.to_i"

603 elsif transform.output_type.downcase == "float"

604 code += "\ninput.to_f"

605 elsif transform.output_type.downcase == "boolean"

94

606 # code += "\ninput.to_b"

607 else

608 code += "\ninput.to_s"

609 end

610

611 if transform.output_type.downcase == "boolean"

612 if eval code

613 return val

614 else

615 return false

616 end

617 else

618 return eval code

619 end

620 end

621

622 end

623 ### End webservice_controller ###

95

BIBLIOGRAPHY

[1] PostgreSQL 8.2.1 Documentation, 2006.

[2] Altinal, M., Bronhovd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., and Rein-
wald, B. Cache tables: Paving the way for an adaptive database cache. InProceedings
of the 29th VLDB Conference(2003).

[3] Banzhaf, H. S. Establishing a bureau of environmental statistics: more data collection
and analysis would greatly enhance our ability to set policy and measure its effective-
ness.Issues in Science and Technology 20.2(2004), 25–6.

[4] Bohr, J., and Zybtowski, J. Michigan fish contaminant monitoring program (annual
report).

[5] Bontempo, C., and Zagelow, G. The ibm data warehouse architecture.Communica-
tions of the ACM 41, 9 (September 1998), 38–48.

[6] Cooper, P.Beginning Ruby: From Novice to Professional. Apress, 2007.

[7] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S. Service-oriented
computing: The next step in web services.Communications of the ACM 46, 10 (Oc-
tober 2003), 29–34.

[8] Daconta, M. C., Obrst, L. J., and Smith, K. T.The Semantic Web. Wiley, 2003.

[9] El Maghraoui, K., Desell, T. J., Szymanski, B. K., and Varela, C. A. The internet
operating system: Middleware for adaptive distributed computing.The International
Journal of High Performance Computing Applications 20, 4 (Winter 2006), 467–480.

[10] Ikoma, E., Taniguchi, K., Koike, T., and Kitsuregawa, M. Development of a data
mining application for huge scale earth environmental data archives.Int. J. Compu-
tational Science and Engineering 2(2006), 262–270.

[11] Issarny, V., Caporuscio, M., and Georgantas, N. A perspective on the future of
middleware-based software engineering. InInternational Conference on Software
Engineering(2007), IEEE Computer Society.

[12] Jarke, M., Lenzerini, M., Vassiliou, Y., and Vassiliadis, P.Fundamentals of Data
Warehouses. Springer, 2000.

[13] Jukic, N. Modeling strategies and alternatives for data warehousing projects.Com-
munications of the ACM 49, 4 (2006), 83–89.

[14] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-
Interscience, 2003.

96

[15] Liu, H., and Motoda, H., Eds.Instance Selection and Construction for Data Mining.
Kluwer Academic Publishers, 2001.

[16] Milo, T., Abiteboul, S., Amann, B., Benjelloun, O., and Ngoc, F. D. Exchanging
intensional xml data.ACM Transactions on Database Systems 30, 1 (March 2005),
1–40.

[17] Sen, A., and Sinha, A. P. A comparison of data warehousing methodologies.Com-
munications of the ACM 48(2005), 79 – 84.

[18] Singh, H. Data Warehousing: Concepts, Technologies, Implementations, and Man-
agement. Prentice-Hall, 1998.

[19] Thomas, D., Hansson, D., Breedt, L., Clark, M., Gehtland, J. D. D. A. J., and Schwarz,
A. Agile Web Development With Rails, 2nd ed. Pragmatic Bookshelf, 2006.

[20] Wang, J., Ed.Encyclopedia of Data Warehousing and Mining, vol. 1. Idea Group
Reference, 2006.

[21] Wang, J., Ed.Encyclopedia of Data Warehousing and Mining, vol. 2. Idea Group
Reference, 2006.

[22] WN Venables, D. S.An Introduction to R, 2008.

[23] Ye, N., Ed.The Handbook of Data Mining. Lawrence Erlbaum Associates, Inc, 2003.

[24] Zhang, L.-J.Modern Technologies in Web Services Research. IGI Publishing, 2007.

97

